1,244 research outputs found

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Accurate synthesis of Dysarthric Speech for ASR data augmentation

    Full text link
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems can help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech, which is not readily available for dysarthric talkers. This paper presents a new dysarthric speech synthesis method for the purpose of ASR training data augmentation. Differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels are important components for dysarthric speech modeling, synthesis, and augmentation. For dysarthric speech synthesis, a modified neural multi-talker TTS is implemented by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. To evaluate the effectiveness for synthesis of training data for ASR, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has significant impact on the dysarthric ASR systems. In addition, we have conducted a subjective evaluation to evaluate the dysarthric-ness and similarity of synthesized speech. Our subjective evaluation shows that the perceived dysartrhic-ness of synthesized speech is similar to that of true dysarthric speech, especially for higher levels of dysarthriaComment: arXiv admin note: text overlap with arXiv:2201.1157

    Open-set Speaker Identification

    Get PDF
    This study is motivated by the growing need for effective extraction of intelligence and evidence from audio recordings in the fight against crime, a need made ever more apparent with the recent expansion of criminal and terrorist organisations. The main focus is to enhance open-set speaker identification process within the speaker identification systems, which are affected by noisy audio data obtained under uncontrolled environments such as in the street, in restaurants or other places of businesses. Consequently, two investigations are initially carried out including the effects of environmental noise on the accuracy of open-set speaker recognition, which thoroughly cover relevant conditions in the considered application areas, such as variable training data length, background noise and real world noise, and the effects of short and varied duration reference data in open-set speaker recognition. The investigations led to a novel method termed “vowel boosting” to enhance the reliability in speaker identification when operating with varied duration speech data under uncontrolled conditions. Vowels naturally contain more speaker specific information. Therefore, by emphasising this natural phenomenon in speech data, it enables better identification performance. The traditional state-of-the-art GMM-UBMs and i-vectors are used to evaluate “vowel boosting”. The proposed approach boosts the impact of the vowels on the speaker scores, which improves the recognition accuracy for the specific case of open-set identification with short and varied duration of speech material

    USING DEEP LEARNING-BASED FRAMEWORK FOR CHILD SPEECH EMOTION RECOGNITION

    Get PDF
    Biological languages of the body through which human emotion can be detected abound including heart rate, facial expressions, movement of the eyelids and dilation of the eyes, body postures, skin conductance, and even the speech we make. Speech emotion recognition research started some three decades ago, and the popular Interspeech Emotion Challenge has helped to propagate this research area. However, most speech recognition research is focused on adults and there is very little research on child speech. This dissertation is a description of the development and evaluation of a child speech emotion recognition framework. The higher-level components of the framework are designed to sort and separate speech based on the speaker’s age, ensuring that focus is only on speeches made by children. The framework uses Baddeley’s Theory of Working Memory to model a Working Memory Recurrent Network that can process and recognize emotions from speech. Baddeley’s Theory of Working Memory offers one of the best explanations on how the human brain holds and manipulates temporary information which is very crucial in the development of neural networks that learns effectively. Experiments were designed and performed to provide answers to the research questions, evaluate the proposed framework, and benchmark the performance of the framework with other methods. Satisfactory results were obtained from the experiments and in many cases, our framework was able to outperform other popular approaches. This study has implications for various applications of child speech emotion recognition such as child abuse detection and child learning robots

    Arabic Isolated Word Speaker Dependent Recognition System

    Get PDF
    In this thesis we designed a new Arabic isolated word speaker dependent recognition system based on a combination of several features extraction and classifications techniques. Where, the system combines the methods outputs using a voting rule. The system is implemented with a graphic user interface under Matlab using G62 Core I3/2.26 Ghz processor laptop. The dataset used in this system include 40 Arabic words recorded in a calm environment with 5 different speakers using laptop microphone. Each speaker will read each word 8 times. 5 of them are used in training and the remaining are used in the test phase. First in the preprocessing step we used an endpoint detection technique based on energy and zero crossing rates to identify the start and the end of each word and remove silences then we used a discrete wavelet transform to remove noise from signal. In order to accelerate the system and reduce the execution time we make the system first to recognize the speaker and load only the reference model of that user. We compared 5 different methods which are pairwise Euclidean distance with MelFrequency cepstral coefficients (MFCC), Dynamic Time Warping (DTW) with Formants features, Gaussian Mixture Model (GMM) with MFCC, MFCC+DTW and Itakura distance with Linear Predictive Coding features (LPC) and we got a recognition rate of 85.23%, 57% , 87%, 90%, 83% respectively. In order to improve the accuracy of the system, we tested several combinations of these 5 methods. We find that the best combination is MFCC | Euclidean + Formant | DTW + MFCC | DTW + LPC | Itakura with an accuracy of 94.39% but with large computation time of 2.9 seconds. In order to reduce the computation time of this hybrid, we compare several subcombination of it and find that the best performance in trade off computation time is by first combining MFCC | Euclidean + LPC | Itakura and only when the two methods do not match the system will add Formant | DTW + MFCC | DTW methods to the combination, where the average computation time is reduced to the half to 1.56 seconds and the system accuracy is improved to 94.56%. Finally, the proposed system is good and competitive compared with other previous researches

    The relationship between maternal speech clarity and infant language outcomes

    Get PDF
    Mothers' use of infant-directed speech (IDS) may assist infants in decoding language input. IDS is characterized by exaggerated prosodic features (Fernald, 1989), shorter mean length of utterance (Cooper, 1997; Bernstein Ratner, 1996), repetition (Bernstein Ratner, 1996), and more highly clarified acoustic qualities (Bernstein Ratner, 1984; Malsheen, 1980) in comparison to speech directed to adults. However, it is not yet known to what extent such measures of maternal input have long-term impacts on language development. This thesis seeks to test the overarching hypothesis that children who receive more clarified speech input during the prelinguistic stage may be expected to have better language skills at an earlier age than children who receive poorer quality input

    The effect of telepractice on vocal interaction between provider, deaf and hard-of-hearing pediatric patients, and caregivers.

    Get PDF
    The purpose of this thesis is to examine how telepractice affects a vocal interaction between a speech-language pathologist (SLP), deaf and hard-of-hearing children who received cochlear implants (n = 7), and caregivers as they engage in speech-language interventions conducted in-person and via telepractice (tele). Frequency of vocalizations, vocal turns, pause duration, fundamental frequency (F0) mean and range, utterance duration, syllable rate per utterance duration, and mean length of utterance (MLU) were examined. The SLP vocalized more during in-person than tele-sessions, opposite result for the mother. There were more SLP-child turns during in-person sessions than tele-sessions; opposite result for mother-child turns. Pauses were longer in SLP-child, mother-child turns during tele than in-person sessions. The SLP increased mean F0, SLP and child expanded F0 range in tele-sessions. The mother had longer utterance duration, higher MLU during in-person than tele-sessions. Results suggest vocal interactions between provider, patient, and caregiver are impacted by intervention service modality

    A Study of Accomodation of Prosodic and Temporal Features in Spoken Dialogues in View of Speech Technology Applications

    Get PDF
    Inter-speaker accommodation is a well-known property of human speech and human interaction in general. Broadly it refers to the behavioural patterns of two (or more) interactants and the effect of the (verbal and non-verbal) behaviour of each to that of the other(s). Implementation of thisbehavior in spoken dialogue systems is desirable as an improvement on the naturalness of humanmachine interaction. However, traditional qualitative descriptions of accommodation phenomena do not provide sufficient information for such an implementation. Therefore, a quantitativedescription of inter-speaker accommodation is required. This thesis proposes a methodology of monitoring accommodation during a human or humancomputer dialogue, which utilizes a moving average filter over sequential frames for each speaker. These frames are time-aligned across the speakers, hence the name Time Aligned Moving Average (TAMA). Analysis of spontaneous human dialogue recordings by means of the TAMA methodology reveals ubiquitous accommodation of prosodic features (pitch, intensity and speech rate) across interlocutors, and allows for statistical (time series) modeling of the behaviour, in a way which is meaningful for implementation in spoken dialogue system (SDS) environments.In addition, a novel dialogue representation is proposed that provides an additional point of view to that of TAMA in monitoring accommodation of temporal features (inter-speaker pause length and overlap frequency). This representation is a percentage turn distribution of individual speakercontributions in a dialogue frame which circumvents strict attribution of speaker-turns, by considering both interlocutors as synchronously active. Both TAMA and turn distribution metrics indicate that correlation of average pause length and overlap frequency between speakers can be attributed to accommodation (a debated issue), and point to possible improvements in SDS “turntaking” behaviour. Although the findings of the prosodic and temporal analyses can directly inform SDS implementations, further work is required in order to describe inter-speaker accommodation sufficiently, as well as to develop an adequate testing platform for evaluating the magnitude ofperceived improvement in human-machine interaction. Therefore, this thesis constitutes a first step towards a convincingly useful implementation of accommodation in spoken dialogue systems
    corecore