18,193 research outputs found

    A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques

    Full text link
    We present a circuit model to describe the electron transport through a domain wall in a ferromagnetic nanowire. The domain wall is treated as a coherent 4-terminal device with incoming and outgoing channels of spin up and down and the spin-dependent scattering in the vicinity of the wall is modelled using classical resistances. We derive the conductance of the circuit in terms of general conductance parameters for a domain wall. We then calculate these conductance parameters for the case of ballistic transport through the domain wall, and obtain a simple formula for the domain wall magnetoresistance which gives a result consistent with recent experiments. The spin transfer torque exerted on a domain wall by a spin-polarized current is calculated using the circuit model and an estimate of the speed of the resulting wall motion is made.Comment: 10 pages, 5 figures; submitted to Physical Review

    Aspects of Galilean and Relativistic Particle Mechanics with Dirac's Constraints

    Get PDF
    Relevant physical models are described by singular Lagrangians, so that their Hamiltonian description is based on the Dirac theory of constraints. The qualitative aspects of this theory are now understood, in particular the role of the Shanmugadhasan canonical transformation in the determination of a canonical basis of Dirac's observables allowing the elimination of gauge degrees of freedom from the classical description of physical systems. This programme was initiated by Dirac for the electromagnetic field with charged fermions. Now Dirac's observables for Yang-Mills theory with fermions (whose typical application is QCD) have been found in suitable function spaces where the Gribov ambiguity is absent. Also the ones for the Abelian Higgs model are known and those for the SU(2)Ă—U(1)SU(2) \times U(1) electroweak theory with fermions are going to be found with the same method working for the Abelian case. The main task along these lines will now be the search of Dirac's observables for tetrad gravity in the case of asymptotically flat 3-manifolds. The philosophy behind this approach is ``first reduce, then quantize": this requires a global symplectic separation of the physical variables from the gauge ones so that the role of differential geometry applied to smooth field configurations is dominating, in contrast with the standard approach of ``first quantizing, then reducing", where, in the case of gauge field theory, the reduction process takes place on distributional field configurations, which dominate in quantum measures. This global separation has been accomplished till now, at least at a heuristic level, and one is going to have a classical (pseudoclassical for the fermion) variables basis for the physical description of the SU(3)Ă—SU(2)Ă—U(1)SU(3)\times SU(2)\times U(1) standard model; instead, with tetrad gravity one expects toComment: Talk given at the Conference ``Theories of Fundamental Interactions", Maynooth (Ireland), May 1995. (LaTeX file

    Pseudorandom number generators revisited

    Get PDF
    Statistical Methods;mathematische statistiek

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Collaborative Uploading in Heterogeneous Networks: Optimal and Adaptive Strategies

    Full text link
    Collaborative uploading describes a type of crowdsourcing scenario in networked environments where a device utilizes multiple paths over neighboring devices to upload content to a centralized processing entity such as a cloud service. Intermediate devices may aggregate and preprocess this data stream. Such scenarios arise in the composition and aggregation of information, e.g., from smartphones or sensors. We use a queuing theoretic description of the collaborative uploading scenario, capturing the ability to split data into chunks that are then transmitted over multiple paths, and finally merged at the destination. We analyze replication and allocation strategies that control the mapping of data to paths and provide closed-form expressions that pinpoint the optimal strategy given a description of the paths' service distributions. Finally, we provide an online path-aware adaptation of the allocation strategy that uses statistical inference to sequentially minimize the expected waiting time for the uploaded data. Numerical results show the effectiveness of the adaptive approach compared to the proportional allocation and a variant of the join-the-shortest-queue allocation, especially for bursty path conditions.Comment: 15 pages, 11 figures, extended version of a conference paper accepted for publication in the Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), 201

    A model-based multithreshold method for subgroup identification

    Get PDF
    Thresholding variable plays a crucial role in subgroup identification for personalizedmedicine. Most existing partitioning methods split the sample basedon one predictor variable. In this paper, we consider setting the splitting rulefrom a combination of multivariate predictors, such as the latent factors, principlecomponents, and weighted sum of predictors. Such a subgrouping methodmay lead to more meaningful partitioning of the population than using a singlevariable. In addition, our method is based on a change point regression modeland thus yields straight forward model-based prediction results. After choosinga particular thresholding variable form, we apply a two-stage multiple changepoint detection method to determine the subgroups and estimate the regressionparameters. We show that our approach can produce two or more subgroupsfrom the multiple change points and identify the true grouping with high probability.In addition, our estimation results enjoy oracle properties. We design asimulation study to compare performances of our proposed and existing methodsand apply them to analyze data sets from a Scleroderma trial and a breastcancer study
    • …
    corecore