194 research outputs found

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Auto-scaling techniques for cloud-based Complex Event Processing

    Get PDF
    One key topic in cloud computing is elasticity, which is the ability of the cloud environment to timely adapt the resource assignment along with the workload demand. According to cloud on-demand model, the infrastructure should be able to scale up and down to unpredictable workloads, in order to achieve both a guaranteed service level and cost efficiency. This work addresses the cloud elasticity problem, with particular reference to the Complex Event Processing (CEP) systems. CEP systems are designed to process large volumes of event-driven data streams and continuously provide results with a low latency and in real-time. CEP systems need to adapt to changing query and events loads. Because of the high computational requirements and varying loads, CEP are distributed system and running on cloud infrastructures. In this work we review the cloud computing auto-scaling solutions, and study their suit- ability in the CEP model. We implement some solutions in a CEP prototype and evaluate the experimental results

    Adaptable Service Oriented Infrastructure Provisioning with Lightweight Containers Virtualization Technology

    Get PDF
    Modern computing infrastructures should enable realization of converged provisioning and governance operations on virtualized computing, storage and network resources used on behalf of users' workloads. These workloads must have ensured sufficient access to the resources to satisfy required QoS. This requires flexible platforms providing functionality for construction, activation and governance of Runtime Infrastructure which can be realized according to Service Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management framework requires definition of flexible architecture and utilization of advanced software engineering and policy-based techniques. The paper presents an Adaptable SOI Provisioning Platform which supports adaptable SOI provisioning with lightweight virtualization, compliant with the structured process model suitable for construction, activation and governance of IT environments. The requirements, architecture and implementation of the platform are all discussed. Practical usage of the platform is presented on the basis of a complex case study for provisioning JEE middleware on top of the Solaris 10 lightweight virtualization platform

    A survey on elasticity management in PaaS systems

    Full text link
    [EN] Elasticity is a goal of cloud computing. An elastic system should manage in an autonomic way its resources, being adaptive to dynamic workloads, allocating additional resources when workload is increased and deallocating resources when workload decreases. PaaS providers should manage resources of customer applications with the aim of converting those applications into elastic services. This survey identifies the requirements that such management imposes on a PaaS provider: autonomy, scalability, adaptivity, SLA awareness, composability and upgradeability. This document delves into the variety of mechanisms that have been proposed to deal with all those requirements. Although there are multiple approaches to address those concerns, providers main goal is maximisation of profits. This compels providers to look for balancing two opposed goals: maximising quality of service and minimising costs. Because of this, there are still several aspects that deserve additional research for finding optimal adaptability strategies. Those open issues are also discussed.This work has been partially supported by EU FEDER and Spanish MINECO under research Grant TIN2012-37719-C03-01.Muñoz-Escoí, FD.; Bernabeu Aubán, JM. (2017). A survey on elasticity management in PaaS systems. Computing. 99(7):617-656. https://doi.org/10.1007/s00607-016-0507-8S617656997Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of Electrical and Computer Science, Massachusetts Institute of Technology, USAAjmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA, pp 1411–1416Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In: Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM 56(5):55–63Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD). NY, USA, New York, pp 761–772Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in software development: a survey. IEEE Trans Softw Eng 30(5):295–310Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, pp 164–177Bennani MN, Menascé DA (2005) Resource allocation for autonomic data centers using analytic performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co., ISBN 1-884777-29-5Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USABloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice. Softw Eng J 8(2):102–108Caballer M, Segrelles Quilis JD, Moltó G, Blanquer I (2015) A platform to deploy customized scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329Calatrava A, Romero E, Moltó G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service providers. Comput Netw 57(3):795–810Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: ACM Cloud Autonomic Computing Conference (CAC), FL, USA, Miami, pp 1–10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4Copil G, Trihinas D, Truong HL, Moldovan D, Pallis G, Dustdar S, Dikaiakos MD (2014) ADVISE—A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on Service-Oriented Computing (ICSOC), France, Paris, pp 275–290Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation studies. ACM J Emerg Technol 10(1):8:1–8:34Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud computing: a survey. Ann Telecommun 70(15):289–309Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization. In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi, India, pp 431–445de Juan-Marín R, Decker H, Armendáriz-Íñigo JE, Bernabéu-Aubán JM, Muñoz-EscoíFD (2015) Scalability approaches for causal multicast: a survey. Computing (in press)de Miguel M, Lambolais T, Hannouz M, Betgé-Brezetz S, Piekarec S (2000) UML extensions for the specification and evaluation of latency constraints in architectural models. In: Workshop on Software and Performance (WOSP), Ottawa, Canada, pp 83–88Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66–71Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and Linux containers. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216Gambi A, Hummer W, Truong HL, Dustdar S (2013) Testing elastic computing systems. IEEE Internet Comput 17(6):76–82Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and estimation of software aging. In: 9th International Symposium on Software Reliability Engineering (ISSRE), Paderborn, Germany, pp 283–292Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, pp 102–111Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In: 6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada, pp 9–16Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Exp 44(3):369–390Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD thesis, Facultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, Munich, GermanyHasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI, USA, pp 1327–1334Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–87Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology. Tech. rep. IBM PressHuebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput Surv 40(3):7Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hypervisors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 269–276IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th edIosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation in service compositions. Computing 95(6):453–492Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud resource demand provisioning. In: 11th International Conference on Data Mining (ICDM), Vancouver, Canada, pp 1104–1109Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group, Internet Engineering Task ForceKephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 61–72Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475Knauth T, Fetzer C (2014) DreamServer: truly on-demand cloud services. In: International Conference on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev 44(2):35–40Lang W, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans Knowl Data Eng 26(6):1447–1463Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 896–899Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Computer system analysis using queueing network models. Prentice Hall, Upper Saddle RiverLeitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS), Florida, USA, Miami, pp 369–376Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J Syst Softw 84(12):2123–2138Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona, Spain, pp 13–18Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud applications. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY, USA, pp 1115–1118Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4):559–592Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D, Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and Application Metrics at Scale. ISBN 978-1-4493-2970-9Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed Systems (SRDS). Nara, Japan, pp 311–320Medina V, García JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput Surv 46(3):30Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology, Special Publication 800-145Menascé DA, Bennani MN (2006) Autonomic virtualized environments. In: International Conference on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28Menascé DA, Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning. In: 35th International Computer Measurement Group Conference, Dallas, TX, USAMenascé DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform Eval 64(7–8):646–663Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, pp 457–463Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the cloud. PhD thesis, Université d’Evry-Val d’Essonne, FranceMohamed M, Amziani M, Belaïd D, Tata S, Melliti T (2015) An autonomic approach to manage elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61Mohd Yusoh ZI (2013) Composite SaaS resource management in cloud computing using evolutionary computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, AustraliaMontero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput computing clusters. J Parallel Distrib Comput 71(6):750–757Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp 386–393Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud computing. Springer, Berlin, pp 235–263Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Williamsburg, VA, USA, pp 1–10Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon, Portugal, pp 289–302Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE), Sorrento, Italy, pp 279–287Parzen E (1960) A survey on time series analysis. Tech. rep., n. 37, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA, USAPascual-Miret L, González de Mendívil JR, Bernabéu-Aubán JM, Muñoz-Escoí FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politècnica de València, Valencia, SpainPopek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421Potter S, Nieh J (2005) AutoPod: Unscheduled system updates with zero data loss. In: 2nd International Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University of British Columbia, Vancouver, CanadaReinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems. Perform Eval 67(8):676–693Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 500–507Ruiz-Fuertes MI, Muñoz-Escoí FD (2009) Performance evaluation of a metaprotocol for database replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara Falls, New York, USA, pp 32–38Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81Seifzadeh H, Abolhassani H, Moshkenani MS (2013) A survey of dynamic software updating. J Softw Evol Process 25(5):535–568Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis, Minnesota, USA, pp 559–570Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS) Workshop, Hyderabad, India, pp 509–518Shen Z, Subbiah S, Gu X, Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv 48(3):42:1–42:46Smith CU (1980) The prediction and evaluation of the performance of software from extended design specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USASmith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, Fakultät IV Elektronik und Informatik, Technischen Universität Berlin, Berlin, GermanySoltesz S, Pötzl H, Fiuczynski ME, Bavier AC, Peterson LL (2007) Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference, Lisbon, Portugal, pp 275–287Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, Stumm M, Auslander MA, Ostrowski M, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration. In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis (paper 269), School of Computing, University of North Florida, USAStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems (SRDS). Montreal, QC, Canada, pp 68–73Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeToosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47Vaquero González LM, Rodero-Merino L, Cáceres J, Lindner MA (2009) A break in the clouds: towards a cloud definition. Comput Commun Rev 39(1):50–55Varrette S, Guzek M, Plugaru V, Besseron X, Bouvry P (2013) HPC performance and energy-efficiency of Xen, KVM and VMware hypervisors. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. IEEE Comput 39(11):12–14Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-oriented clouds. Softw Pract Exp 41(5):469–493Whitaker A, Cox RS, Shaw M, Gribble SD (2005) Rethinking the design of virtual machine monitors. IEEE Comput 38(5):57–62Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises (IWAISE), Tunis, Tunisia, pp 22–28Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in th

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques

    Multi-access edge computing: A survey

    Get PDF
    Multi-access Edge Computing (MEC) is a key solution that enables operators to open their networks to new services and IT ecosystems to leverage edge-cloud benefits in their networks and systems. Located in close proximity from the end users and connected devices, MEC provides extremely low latency and high bandwidth while always enabling applications to leverage cloud capabilities as necessary. In this article, we illustrate the integration of MEC into a current mobile networks' architecture as well as the transition mechanisms to migrate into a standard 5G network architecture.We also discuss SDN, NFV, SFC and network slicing as MEC enablers. Then, we provide a state-of-the-art study on the different approaches that optimize the MEC resources and its QoS parameters. In this regard, we classify these approaches based on the optimized resources and QoS parameters (i.e., processing, storage, memory, bandwidth, energy and latency). Finally, we propose an architectural framework for a MEC-NFV environment based on the standard SDN architecture
    • …
    corecore