3,156 research outputs found

    Online unsupervised deep unfolding for massive MIMO channel estimation

    Full text link
    Massive MIMO communication systems have a huge potential both in terms of data rate and energy efficiency, although channel estimation becomes challenging for a large number antennas. Using a physical model allows to ease the problem by injecting a priori information based on the physics of propagation. However, such a model rests on simplifying assumptions and requires to know precisely the configuration of the system, which is unrealistic in practice. In this letter, we propose to perform online learning for channel estimation in a massive MIMO context, adding flexibility to physical channel models by unfolding a channel estimation algorithm (matching pursuit) as a neural network. This leads to a computationally efficient neural network structure that can be trained online when initialized with an imperfect model. The method allows a base station to automatically correct its channel estimation algorithm based on incoming data, without the need for a separate offline training phase. It is applied to realistic millimeter wave channels and shows great performance, achieving a channel estimation error almost as low as one would get with a perfectly calibrated system

    Robust Geometry-Based User Scheduling for Large MIMO Systems Under Realistic Channel Conditions

    Full text link
    The problem of user scheduling with reduced overhead of channel estimation in the uplink of Massive multiple-input multiple-output (MIMO) systems has been considered. A geometry-based stochastic channel model (GSCM), called the COST 2100 channel model has been used for realistic analysis of channels. In this paper, we propose a new user selection algorithm based on knowledge of the geometry of the service area and location of clusters, without having full channel state information (CSI) at the base station (BS). The multi-user link correlation in the GSCMs arises from the common clusters in the area. The throughput depends on the position of clusters in the GSCMs and users in the system. Simulation results show that although the BS does not require the channel information of all users, by the proposed geometry-based user scheduling algorithm the sum-rate of the system is only slightly less than the well-known greedy weight clique scheme. Finally, the robustness of the proposed algorithm to the inaccuracy of cluster localization is verified by the simulation results.Comment: 4 figure

    High-Dimensional CSI Acquisition in Massive MIMO: Sparsity-Inspired Approaches

    Full text link
    Massive MIMO has been regarded as one of the key technologies for 5G wireless networks, as it can significantly improve both the spectral efficiency and energy efficiency. The availability of high-dimensional channel side information (CSI) is critical for its promised performance gains, but the overhead of acquiring CSI may potentially deplete the available radio resources. Fortunately, it has recently been discovered that harnessing various sparsity structures in massive MIMO channels can lead to significant overhead reduction, and thus improve the system performance. This paper presents and discusses the use of sparsity-inspired CSI acquisition techniques for massive MIMO, as well as the underlying mathematical theory. Sparsity-inspired approaches for both frequency-division duplexing and time-division duplexing massive MIMO systems will be examined and compared from an overall system perspective, including the design trade-offs between the two duplexing modes, computational complexity of acquisition algorithms, and applicability of sparsity structures. Meanwhile, some future prospects for research on high-dimensional CSI acquisition to meet practical demands will be identified.Comment: 15 pages, 3 figures, 1 table, submitted to IEEE Systems Journal Special Issue on 5G Wireless Systems with Massive MIM

    Massive MIMO and Waveform Design for 5th Generation Wireless Communication Systems

    Full text link
    This article reviews existing related work and identifies the main challenges in the key 5G area at the intersection of waveform design and large-scale multiple antenna systems, also known as Massive MIMO. The property of self-equalization is introduced for Filter Bank Multicarrier (FBMC)-based Massive MIMO, which can reduce the number of subcarriers required by the system. It is also shown that the blind channel tracking property of FBMC can be used to address pilot contamination -- one of the main limiting factors of Massive MIMO systems. Our findings shed light into and motivate for an entirely new research line towards a better understanding of waveform design with emphasis on FBMC-based Massive MIMO networks.Comment: 6 pages, 2 figures, 1st International Conference on 5G for Ubiquitous Connectivit

    A Block Sparsity Based Estimator for mmWave Massive MIMO Channels with Beam Squint

    Full text link
    Multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication is a key technology for next generation wireless networks. One of the consequences of utilizing a large number of antennas with an increased bandwidth is that array steering vectors vary among different subcarriers. Due to this effect, known as beam squint, the conventional channel model is no longer applicable for mmWave massive MIMO systems. In this paper, we study channel estimation under the resulting non-standard model. To that aim, we first analyze the beam squint effect from an array signal processing perspective, resulting in a model which sheds light on the angle-delay sparsity of mmWave transmission. We next design a compressive sensing based channel estimation algorithm which utilizes the shift-invariant block-sparsity of this channel model. The proposed algorithm jointly computes the off-grid angles, the off-grid delays, and the complex gains of the multi-path channel. We show that the newly proposed scheme reflects the mmWave channel more accurately and results in improved performance compared to traditional approaches. We then demonstrate how this approach can be applied to recover both the uplink as well as the downlink channel in frequency division duplex (FDD) systems, by exploiting the angle-delay reciprocity of mmWave channels

    Downlink channel spatial covariance estimation in realistic FDD massive MIMO systems

    Full text link
    The knowledge of the downlink (DL) channel spatial covariance matrix at the BS is of fundamental importance for large-scale array systems operating in frequency division duplexing (FDD) mode. In particular, this knowledge plays a key role in the DL channel state information (CSI) acquisition. In the massive MIMO regime, traditional schemes based on DL pilots are severely limited by the covariance feedback and the DL training overhead. To overcome this problem, many authors have proposed to obtain an estimate of the DL spatial covariance based on uplink (UL) measurements. However, many of these approaches rely on simple channel models, and they are difficult to extend to more complex models that take into account important effects of propagation in 3D environments and of dual-polarized antenna arrays. In this study we propose a novel technique that takes into account the aforementioned effects, in compliance with the requirements of modern 4G and 5G system designs. Numerical simulations show the effectiveness of our approach.Comment: [v2] is the version accepted at GlobalSIP 2018. Only minor changes mainly in the introductio

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Efficient Downlink Channel Probing and Uplink Feedback in FDD Massive MIMO Systems

    Full text link
    Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can be implemented with Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD) operation. FDD massive MIMO systems are particularly desirable due to their implementation in current wireless networks and their efficiency in situations with symmetric traffic and delay-sensitive applications. However, implementing FDD massive MIMO systems is known to be challenging since it imposes a large feedback overhead in the Uplink (UL) to obtain channel state information for the Downlink (DL). In recent years, a considerable amount of research is dedicated to developing methods to reduce the feedback overhead in such systems. In this paper, we use the sparse spatial scattering properties of the environment to achieve this goal. The idea is to estimate the support of the continuous, frequency-invariant scattering function from UL channel observations and use this estimate to obtain the support of the DL channel vector via appropriate interpolation. We use the resulting support estimate to design an efficient DL probing and UL feedback scheme in which the feedback dimension scales proportionally with the sparsity order of DL channel vectors. Since the sparsity order is much less than the number of BS antennas in almost all practically relevant scenarios, our method incurs much less feedback overhead compared with the currently proposed methods in the literature, such as those based on compressed-sensing. We use numerical simulations to assess the performance of our probing-feedback algorithm and compare it with these methods.Comment: 24 pages, 10 figure

    Cell-Free Massive MIMO versus Small Cells

    Get PDF
    A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio

    An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Full text link
    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin
    • …
    corecore