68 research outputs found

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    Exploiting Structural Signal Information in Passive Emitter Localization

    Get PDF
    The operational use of systems for passive geolocation of radio frequency emitters poses various challenges to single sensor systems or sensor networks depending on the measurement methods. Position estimation by means of direction finding systems often requires complex receiver and antenna technique. Time (Difference) of Arrival methods (TDOA, TOA) are based on measurements regarding the signal propagation duration and generally require broadband communication links to transmit raw signal data between spatially separated receivers of a sensor network. Such bandwidth requirements are particularly challenging for applications with moving sensor nodes. This issue is addressed in this thesis and techniques that use signal structure information of the considered signals are presented which allow a drastic reduction of the communication requirements. The advantages of using knowledge of the signal structure for TDOA based emitter localization are shown using two exemplary applications. The first case example deals with the passive surveillance of the civil airspace (Air Traffic Management, ATM) using a stationary sensor network. State of the art airspace surveillance is mainly based on active radar systems (Primary Surveillance Radar, PSR), cooperative secondary radar systems (Secondary Surveillance Radar, SSR) and automatic position reports from the aircraft itself (Automatic Dependent Surveillance-Broadcast, ADS-B). SSR as well as ADS-B relies on aircrafts sending transponder signals at a center frequency of 1090 MHz. The reliability and accuracy of the position reports sent by aircrafts using ADS-B are limited and not sufficient to ensure safe airspace separation for example of two aircrafts landing on parallel runways. In the worst case, the data may even be altered with malicious intent. Using passive emitter localization and tracking based on multilateration (TDOA/hyperbolic localization), a precise situational awareness can be given which is independent of the content of the emitted transponder signals. The high concentration of sending targets and the high number of signals require special signal processing and information fusion techniques to overcome the huge amount of data. It will be shown that a multilateration network that employs those techniques can be used to improve airspace security at reasonable costs. For the second case, a concept is introduced which allows TDOA based emitter localization with only one moving observer platform. Conventional TDOA measurements are obtained using spatially distributed sensor nodes which capture an emitted signal at the same time. From those signals, the time difference of arrival is estimated. Under certain conditions, the exploitation of signal structure information allows to transfer the otherwise only spatial into a spatial and temporal measurement problem. This way, it is possible to obtain TDOA estimates over multiple measurement time steps using a single moving observer and to thus localize the emitter of the signals. The concept of direct position determination is applied to the single sensor signal structure TDOA scheme and techniques for direct single sensor TDOA are introduced. The validity and performance of the presented methods is shown in theoretical analysis in terms of Cramér-Rao Lower Bounds, Monte-Carlo simulations and by evaluation of real data gained during field experiments

    RF signal sensing and source localisation systems using Software Defined Radios

    No full text
    Radio frequency (RF) source localisation is a critical technology in numerous location-based military and civilian applications. In this thesis, the problem of RF source localisation has been studied from the perspective of the system implementation for real-world applications. Commercial off-the-shelf Software Defined Radio (SDR) devices are used to demonstrate the practical RF source localisation systems. Compared to the conventional localisation systems, which rely on dedicated hardware, the SDR-based system is developed using general-purpose hardware and software-defined components, offering great flexibility and cost efficiency in system design and implementation. In this thesis, the theoretical results of source localisation are evaluated and put into practice. To be specific, the practical localisation systems using different measurement techniques, including received-signal-strength-indication (RSSI) measurements, time-difference-of-arrival (TDOA) measurements and joint TDOA and frequency-difference-of-arrival (FDOA) measurements, are demonstrated to localise the stationary RF signal sources using the SDRs. The RSSI-based localisation system is demonstrated in small indoor and outdoor areas with a range of several metres using the SDR-based transceivers. Furthermore, interests from the defence area motivated us to implement the time-based localisation systems. The TDOA-based source localisation system is implemented using multiple spatially distributed SDRs in a large outdoor area with the sensor-target range of several kilometres. Moreover, they are implemented in a fully passive way without prior knowledge of the signal emitter, so the solutions can be applied in the localisation of non-cooperative signal sources provided that emitters are distant. To further reduce the system cost, and more importantly, to deal with the situation when the deployment of multiple SDRs, due to geographical restrictions, is not feasible, a joint TDOA and FDOA-based localisation system is also demonstrated using only one stationary SDR and one mobile SDR. To improve the localisation accuracy, the methods that can reduce measurement error and obtain accurate location estimates are studied. Firstly, to obtain a better understanding of the measurement error, the error sources that affect the measurement accuracy are systematically analysed from three aspects: the hardware precision, the accuracy of signal processing methods, and the environmental impact. Furthermore, the approaches to reduce the measurement error are proposed and verified in the experiments. Secondly, during the process of the location estimation, the theoretical results on the pre-existing localisation algorithms which can achieve a good trade-off between the accuracy of location estimation and the computational cost are evaluated, including the weight least-squares (WLS)-based solution and the Extended Kalman Filter (EKF)-based solution. In order to use the pre-existing algorithms in the practical source localisation, the proper adjustments are implemented. Overall, the SDR-based platforms are able to achieve low-cost and universal localisation solutions in the real-world environment. The RSSI-based localisation system shows tens of centimetres of accuracy in a range of several metres, which provides a useful tool for the verification of the range-based localisation algorithms. The localisation accuracy of the TDOA-based localisation system and the joint TDOA and FDOA-based localisation system is several tens of metres in a range of several kilometres, which offers potential in the low-cost localisation solutions in the defence area

    Radio Frequency Emitter Geolocation Using Cubesats

    Get PDF
    The ability to locate an RF transmitter is a topic of growing interest for civilian and military users alike. Geolocation can provide critical information for the intelligence community, search and rescue operators, and the warfighter. The technology required for geolocation has steadily improved over the past several decades, allowing better performance at longer baseline distances between transmitter and receiver. The expansion of geolocation missions from aircraft to spacecraft has necessitated research into how emerging geolocation methods perform as baseline distances are increased beyond what was previously considered. The CubeSat architecture is a relatively new satellite form which could enable small-scale, low-cost solutions to USAF geolocation needs. This research proposes to use CubeSats as a vehicle to perform geolocation missions in the space domain. The CubeSat form factor considered is a 6-unit architecture that allows for 6000 cm3 of space for hardware. There are a number of methods which have been developed for geolocation applications. This research compares four methods with various sensor configurations and signal properties. The four methods\u27 performance are assessed by simulating and modeling the environment, signals, and geolocation algorithms using MATLAB. The simulations created and run in this research show that the angle of arrival method outperforms the instantaneous received frequency method, especially at higher SNR values. These two methods are possible for single and dual satellite architectures. When three or more satellites are available, the direct position determination method outperforms the three other considered methods

    Software Defined Radio Localization using 802.11-style Communications

    Get PDF
    This major qualifying project implements a simple indoor localization system using software defined radio. Both time of arrival and received signal strength methods are used by an array of wireless receivers to trilaterate a cooperative transmitter. The implemented system builds upon an IEEE 802.11b-like communications platform implemented in GNU Radio. Our results indicate substantial room for improvement, particularly in the acquisition of time data. This project contributes a starting point for ongoing research in indoor localization, both through our literature review and system implementation

    2D Triangulation of Signals Source by Pole-Polar Geometric Models

    Get PDF
    The 2D point location problem has applications in several areas, such as geographic information systems, navigation systems, motion planning, mapping, military strategy, location and tracking moves. We aim to present a new approach that expands upon current techniques and methods to locate the 2D position of a signal source sent by an emitter device. This new approach is based only on the geometric relationship between an emitter device and a system composed of m ≥ 2 signal receiving devices. Current approaches applied to locate an emitter can be deterministic, statistical or machine-learning methods. We propose to perform this triangulation by geometric models that exploit elements of pole-polar geometry. For this purpose, we are presenting five geometric models to solve the point location problem: (1) based on centroid of points of pole-polar geometry, PPC; (2) based on convex hull region among pole-points, CHC; (3) based on centroid of points obtained by polar-lines intersections, PLI; (4) based on centroid of points obtained by tangent lines intersections, TLI; (5) based on centroid of points obtained by tangent lines intersections with minimal angles, MAI. The first one has computational cost O(n) and whereas has the computational cost O(n log n)where n is the number of points of interest. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Spanish Ministry of Economy and Competitiveness TIN2016-76956-C3-2-RUniversity of Sevill

    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite Systems

    Get PDF
    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite SystemsNowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations. To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly: • the formulation of a complexity-scalable ST implementable in real time as a bank of filters; • a method for characterizing and localizing multiple in-car jammers through interference snapshots that are collected by separate receivers and analysed with a clever use of the ST; • a preliminary assessment of novel methods for mitigating generic interference at the receiver end by means the ST and more computationally efficient variants of the transform. Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence spread spectrum (DS-SS) communication

    Advanced Wireless Localisation Methods Dealing with Incomplete Measurements

    Get PDF
    Positioning techniques have become an essential part of modern engineering, and the improvement in computing devices brings great potential for more advanced and complicated algorithms. This thesis first studies the existing radio signal based positioning techniques and then presents three developed methods in the sense of dealing with incomplete data. Firstly, on the basis of received signal strength (RSS) location fingerprinting techniques, the Kriging interpolation methods are applied to generate complete fingerprint databases of denser reference locations from sparse or incomplete data sets, as a solution of reducing the workload and cost of offline data collection. Secondly, with incomplete knowledge of shadowing correlation, a new approach of Bayesian inference on RSS based multiple target localisation is proposed taking advantage of the inverse Wishart conjugate prior. The MCMC method (Metropolis-within-Gibbs) and the maximum a posterior (MAP) / maximum likelihood (ML) method are then considered to produce target location estimates. Thirdly, a new information fusion approach is developed for the time difference of arrival (TDOF) and frequency difference of arrival (FDOA) based dual-satellite geolocation system, as a solution to the unknown time and frequency offsets. All proposed methods are studied and validated through simulations. Result analyses and future work directions are discussed

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains
    corecore