110,689 research outputs found

    Generalizing Informed Sampling for Asymptotically Optimal Sampling-based Kinodynamic Planning via Markov Chain Monte Carlo

    Full text link
    Asymptotically-optimal motion planners such as RRT* have been shown to incrementally approximate the shortest path between start and goal states. Once an initial solution is found, their performance can be dramatically improved by restricting subsequent samples to regions of the state space that can potentially improve the current solution. When the motion planning problem lies in a Euclidean space, this region XinfX_{inf}, called the informed set, can be sampled directly. However, when planning with differential constraints in non-Euclidean state spaces, no analytic solutions exists to sampling XinfX_{inf} directly. State-of-the-art approaches to sampling XinfX_{inf} in such domains such as Hierarchical Rejection Sampling (HRS) may still be slow in high-dimensional state space. This may cause the planning algorithm to spend most of its time trying to produces samples in XinfX_{inf} rather than explore it. In this paper, we suggest an alternative approach to produce samples in the informed set XinfX_{inf} for a wide range of settings. Our main insight is to recast this problem as one of sampling uniformly within the sub-level-set of an implicit non-convex function. This recasting enables us to apply Monte Carlo sampling methods, used very effectively in the Machine Learning and Optimization communities, to solve our problem. We show for a wide range of scenarios that using our sampler can accelerate the convergence rate to high-quality solutions in high-dimensional problems

    On weighted time optimal control for linear hybrid automata using quantifier elimination

    Get PDF
    This paper considers the optimal control problem for linear hybrid automata. In particular, it is shown that the problem can be transformed into a constrained optimization problem whose constraints are a set of inequalities with quantifiers. Quantifier Elimination (QE) techniques are employed in order to derive quantifier free inequalities that are linear. The optimal cost is obtained using linear programming. The optimal switching times and optimal continuous control inputs are computed and used in order to derive the optimal hybrid controller. Our results areapplied to an air traffic management example

    Lazy global feedbacks for quantized nonlinear event systems

    Full text link
    We consider nonlinear event systems with quantized state information and design a globally stabilizing controller from which only the minimal required number of control value changes along the feedback trajectory to a given initial condition is transmitted to the plant. In addition, we present a non-optimal heuristic approach which might reduce the number of control value changes and requires a lower computational effort. The constructions are illustrated by two numerical examples

    Analysing oscillatory trends of discrete-state stochastic processes through HASL statistical model checking

    Get PDF
    The application of formal methods to the analysis of stochastic oscillators has been at the focus of several research works in recent times. In this paper we provide insights on the application of an expressive temporal logic formalism, namely the Hybrid Automata Stochastic Logic (HASL), to that issue. We show how one can take advantage of the expressive power of the HASL logic to define and assess relevant characteristics of (stochastic) oscillators

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method
    corecore