115,058 research outputs found

    End-to-end Recurrent Denoising Autoencoder Embeddings for Speaker Identification

    Get PDF
    Speech 'in-the-wild' is a handicap for speaker recognition systems due to the variability induced by real-life conditions, such as environmental noise and emotions in the speaker. Taking advantage of representation learning, on this paper we aim to design a recurrent denoising autoencoder that extracts robust speaker embeddings from noisy spectrograms to perform speaker identification. The end-to-end proposed architecture uses a feedback loop to encode information regarding the speaker into low-dimensional representations extracted by a spectrogram denoising autoencoder. We employ data augmentation techniques by additively corrupting clean speech with real life environmental noise and make use of a database with real stressed speech. We prove that the joint optimization of both the denoiser and the speaker identification module outperforms independent optimization of both modules under stress and noise distortions as well as hand-crafted features.Comment: 8 pages + 2 of references + 5 of images. Submitted on Monday 20th of July to Elsevier Signal Processing Short Communication

    Evaluation of Manual vs. Speech Input When Using a Driver Information System in Real Traffic

    Get PDF
    The executed study evaluated the influence of manual and speech input on driving quality, stress and strain situation and user acceptance when using a Driver Information System (DIS). The study is part of the EU-project SENECA. 16 subjects took part in the investigations. A car was equipped with a modified DIS to carry out the evaluation in real traffic situations. The used DIS is a standard product with manual input control elements. This DIS was extended by a speech input system with a speaker independent speech recogniser. For the use of the different DIS devices (radio, CD player, telephone, navigation) 12 different representative tasks were given to the subjects. Independently the type of task speech input needs longer operation times than manual input. In case of complex tasks a distinct improvement of the driving quality can be observed with speech instead of manual input. The subjective safety feeling is stronger with speech than with manual input. With speech input the number of glances at the mirrors and aside is clearly higher than with manual input. The most frequent user errors can be explained by problems when spelling and by the selection of wrong speech commands. The rate of speech recognition errors amounts on the average to 20.6 % what makes it necessary to increase the recognition performance of the examined speech system. This improvement of system performance is the task of the development for the system demonstrator in the 2nd half of the SENECA project

    Prosodic Event Recognition using Convolutional Neural Networks with Context Information

    Full text link
    This paper demonstrates the potential of convolutional neural networks (CNN) for detecting and classifying prosodic events on words, specifically pitch accents and phrase boundary tones, from frame-based acoustic features. Typical approaches use not only feature representations of the word in question but also its surrounding context. We show that adding position features indicating the current word benefits the CNN. In addition, this paper discusses the generalization from a speaker-dependent modelling approach to a speaker-independent setup. The proposed method is simple and efficient and yields strong results not only in speaker-dependent but also speaker-independent cases.Comment: Interspeech 2017 4 pages, 1 figur

    Stress and accent in language production and understanding

    Get PDF

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Syllable classification using static matrices and prosodic features

    Get PDF
    In this paper we explore the usefulness of prosodic features for syllable classification. In order to do this, we represent the syllable as a static analysis unit such that its acoustic-temporal dynamics could be merged into a set of features that the SVM classifier will consider as a whole. In the first part of our experiment we used MFCC as features for classification, obtaining a maximum accuracy of 86.66%. The second part of our study tests whether the prosodic information is complementary to the cepstral information for syllable classification. The results obtained show that combining the two types of information does improve the classification, but further analysis is necessary for a more successful combination of the two types of features
    • …
    corecore