12,115 research outputs found

    Importance sampling the union of rare events with an application to power systems analysis

    Full text link
    We consider importance sampling to estimate the probability μ\mu of a union of JJ rare events HjH_j defined by a random variable x\boldsymbol{x}. The sampler we study has been used in spatial statistics, genomics and combinatorics going back at least to Karp and Luby (1983). It works by sampling one event at random, then sampling x\boldsymbol{x} conditionally on that event happening and it constructs an unbiased estimate of μ\mu by multiplying an inverse moment of the number of occuring events by the union bound. We prove some variance bounds for this sampler. For a sample size of nn, it has a variance no larger than μ(μˉ−μ)/n\mu(\bar\mu-\mu)/n where μˉ\bar\mu is the union bound. It also has a coefficient of variation no larger than (J+J−1−2)/(4n)\sqrt{(J+J^{-1}-2)/(4n)} regardless of the overlap pattern among the JJ events. Our motivating problem comes from power system reliability, where the phase differences between connected nodes have a joint Gaussian distribution and the JJ rare events arise from unacceptably large phase differences. In the grid reliability problems even some events defined by 57725772 constraints in 326326 dimensions, with probability below 10−2210^{-22}, are estimated with a coefficient of variation of about 0.00240.0024 with only n=10,000n=10{,}000 sample values

    Multiscale inference for a multivariate density with applications to X-ray astronomy

    Get PDF
    In this paper we propose methods for inference of the geometric features of a multivariate density. Our approach uses multiscale tests for the monotonicity of the density at arbitrary points in arbitrary directions. In particular, a significance test for a mode at a specific point is constructed. Moreover, we develop multiscale methods for identifying regions of monotonicity and a general procedure for detecting the modes of a multivariate density. It is is shown that the latter method localizes the modes with an effectively optimal rate. The theoretical results are illustrated by means of a simulation study and a data example. The new method is applied to and motivated by the determination and verification of the position of high-energy sources from X-ray observations by the Swift satellite which is important for a multiwavelength analysis of objects such as Active Galactic Nuclei.Comment: Keywords and Phrases: multiple tests, modes, multivariate density, X-ray astronomy AMS Subject Classification: 62G07, 62G10, 62G2

    Dynamic Tensor Clustering

    Full text link
    Dynamic tensor data are becoming prevalent in numerous applications. Existing tensor clustering methods either fail to account for the dynamic nature of the data, or are inapplicable to a general-order tensor. Also there is often a gap between statistical guarantee and computational efficiency for existing tensor clustering solutions. In this article, we aim to bridge this gap by proposing a new dynamic tensor clustering method, which takes into account both sparsity and fusion structures, and enjoys strong statistical guarantees as well as high computational efficiency. Our proposal is based upon a new structured tensor factorization that encourages both sparsity and smoothness in parameters along the specified tensor modes. Computationally, we develop a highly efficient optimization algorithm that benefits from substantial dimension reduction. In theory, we first establish a non-asymptotic error bound for the estimator from the structured tensor factorization. Built upon this error bound, we then derive the rate of convergence of the estimated cluster centers, and show that the estimated clusters recover the true cluster structures with a high probability. Moreover, our proposed method can be naturally extended to co-clustering of multiple modes of the tensor data. The efficacy of our approach is illustrated via simulations and a brain dynamic functional connectivity analysis from an Autism spectrum disorder study.Comment: Accepted at Journal of the American Statistical Associatio

    On clustering procedures and nonparametric mixture estimation

    Full text link
    This paper deals with nonparametric estimation of conditional den-sities in mixture models in the case when additional covariates are available. The proposed approach consists of performing a prelim-inary clustering algorithm on the additional covariates to guess the mixture component of each observation. Conditional densities of the mixture model are then estimated using kernel density estimates ap-plied separately to each cluster. We investigate the expected L 1 -error of the resulting estimates and derive optimal rates of convergence over classical nonparametric density classes provided the clustering method is accurate. Performances of clustering algorithms are measured by the maximal misclassification error. We obtain upper bounds of this quantity for a single linkage hierarchical clustering algorithm. Lastly, applications of the proposed method to mixture models involving elec-tricity distribution data and simulated data are presented
    • …
    corecore