34 research outputs found

    Achievable Rates for K-user Gaussian Interference Channels

    Full text link
    The aim of this paper is to study the achievable rates for a KK user Gaussian interference channels for any SNR using a combination of lattice and algebraic codes. Lattice codes are first used to transform the Gaussian interference channel (G-IFC) into a discrete input-output noiseless channel, and subsequently algebraic codes are developed to achieve good rates over this new alphabet. In this context, a quantity called efficiency is introduced which reflects the effectiveness of the algebraic coding strategy. The paper first addresses the problem of finding high efficiency algebraic codes. A combination of these codes with Construction-A lattices is then used to achieve non trivial rates for the original Gaussian interference channel.Comment: IEEE Transactions on Information Theory, 201

    Uniquely Decodable Ternary Codes for Synchronous CDMA Systems

    Full text link
    In this paper, we consider the problem of recursively designing uniquely decodable ternary code sets for highly overloaded synchronous code-division multiple-access (CDMA) systems. The proposed code set achieves larger number of users K<KmaxtK < K_{max}^t than any other known state-of-the-art ternary codes that offer low-complexity decoders in the noisy transmission. Moreover, we propose a simple decoder that uses only a few comparisons and can allow the user to uniquely recover the information bits. Compared to maximum likelihood (ML) decoder, which has a high computational complexity for even moderate code length, the proposed decoder has much lower computational complexity. We also derived the computational complexity of the proposed recursive decoder analytically. Simulation results show that the performance of the proposed decoder is almost as good as the ML decoder.Comment: arXiv admin note: text overlap with arXiv:1806.0395

    Fast Decoder for Overloaded Uniquely Decodable Synchronous CDMA

    Full text link
    We consider the problem of designing a fast decoder for antipodal uniquely decodable (errorless) code sets for overloaded synchronous code-division multiple access (CDMA) systems where the number of signals K_{max}^a is the largest known for the given code length L. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code length, the proposed decoder has a much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder only has a 1-2 dB degradation at BER of 10^{-3} when compared to ML

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Smoothing of binary codes, uniform distributions, and applications

    Full text link
    The action of a noise operator on a code transforms it into a distribution on the respective space. Some common examples from information theory include Bernoulli noise acting on a code in the Hamming space and Gaussian noise acting on a lattice in the Euclidean space. We aim to characterize the cases when the output distribution is close to the uniform distribution on the space, as measured by R{\'e}nyi divergence of order α∈[1,∞]\alpha \in [1,\infty]. A version of this question is known as the channel resolvability problem in information theory, and it has implications for security guarantees in wiretap channels, error correction, discrepancy, worst-to-average case complexity reductions, and many other problems. Our work quantifies the requirements for asymptotic uniformity (perfect smoothing) and identifies explicit code families that achieve it under the action of the Bernoulli and ball noise operators on the code. We derive expressions for the minimum rate of codes required to attain asymptotically perfect smoothing. In proving our results, we leverage recent results from harmonic analysis of functions on the Hamming space. Another result pertains to the use of code families in Wyner's transmission scheme on the binary wiretap channel. We identify explicit families that guarantee strong secrecy when applied in this scheme, showing that nested Reed-Muller codes can transmit messages reliably and securely over a binary symmetric wiretap channel with a positive rate. Finally, we establish a connection between smoothing and error correction in the binary symmetric channel

    Successive Refinement with Decoder Cooperation and its Channel Coding Duals

    Full text link
    We study cooperation in multi terminal source coding models involving successive refinement. Specifically, we study the case of a single encoder and two decoders, where the encoder provides a common description to both the decoders and a private description to only one of the decoders. The decoders cooperate via cribbing, i.e., the decoder with access only to the common description is allowed to observe, in addition, a deterministic function of the reconstruction symbols produced by the other. We characterize the fundamental performance limits in the respective settings of non-causal, strictly-causal and causal cribbing. We use a new coding scheme, referred to as Forward Encoding and Block Markov Decoding, which is a variant of one recently used by Cuff and Zhao for coordination via implicit communication. Finally, we use the insight gained to introduce and solve some dual channel coding scenarios involving Multiple Access Channels with cribbing.Comment: 55 pages, 15 figures, 8 tables, submitted to IEEE Transactions on Information Theory. A shorter version submitted to ISIT 201
    corecore