524 research outputs found

    Throughput optimization strategies for large-scale wireless LANs

    Get PDF
    Thanks to the active development of IEEE 802.11, the performance of wireless local area networks (WLANs) is improving by every new edition of the standard facilitating large enterprises to rely on Wi-Fi for more demanding applications. The limited number of channels in the unlicensed industrial scientific medical frequency band however is one of the key bottlenecks of Wi-Fi when scalability and robustness are points of concern. In this paper we propose two strategies for the optimization of throughput in wireless LANs: a heuristic derived from a theoretical model and a surrogate model based decision engine

    Performance modelling of fairness in IEEE 802.11 wireless LAN protocols

    Get PDF
    PhD ThesisWireless communication has become a key technology in the modern world, allowing network services to be delivered in almost any environment, without the need for potentially expensive and invasive fixed cable solutions. However, the level of performance experienced by wireless devices varies tremendously on location and time. Understanding the factors which can cause variability of service is therefore of clear practical and theoretical interest. In this thesis we explore the performance of the IEEE 802.11 family of wireless protocols, which have become the de facto standard for Wireless Local Area Networks (WLANs). The specific performance issue which is investigated is the unfairness which can arise due to the spatial position of nodes in the network. In this work we characterise unfairness in terms of the difference in performance (e.g. throughput) experienced by different pairs of communicating nodes within a network. Models are presented using the Markovian process algebra PEPA which depict different scenarios with three of the main protocols, IEEE 802.11b, IEEE 802.11g and IEEE 802.11n. The analysis shows that performance is affected by the presence of other nodes (including in the well-known hidden node case), by the speed of data and the size of the frames being transmitted. The collection of models and analysis in this thesis collectively provides not only an insight into fairness in IEEE 802.11 networks, but it also represents a significant use case in modelling network protocols using PEPA. PEPA and other stochastic process algebra are extremely powerful tools for efficiently specifying models which might be very complex to study using conventional simulation approaches. Furthermore the tool support for PEPA facilitates the rapid solution of models to derive key metrics which enable the modeller to gain an understanding of the network behaviour across a wide range of operating conditions. From the results we can see that short frames promote a greater fairness due to the more frequent spaces between frames allowing other senders to transmit. An interesting consequence of these findings is the observation that varying frame length can play a role in addressing topological unfairness, which leads to the analysis of a novel model of IEEE 802.11g with variable frame lengths. While varying frame lengths might not always be practically possible, as frames need to be long enough for collisions to be detected, IEEE 802.11n supports a number of mechanisms for frame aggregation, where successive frames may be sent in series with little or no delay between them. We therefore present a novel model of IEEE 802.11n with frame aggregation to explore how this approach affects fairness and, potentially, can be used to address unfairness by allowing affected nodes to transmit longer frame bursts.Kurdistan Region Government of Iraq (KRG) sponso

    A particle system in interaction with a rapidly varying environment: Mean field limits and applications

    Full text link
    We study an interacting particle system whose dynamics depends on an interacting random environment. As the number of particles grows large, the transition rate of the particles slows down (perhaps because they share a common resource of fixed capacity). The transition rate of a particle is determined by its state, by the empirical distribution of all the particles and by a rapidly varying environment. The transitions of the environment are determined by the empirical distribution of the particles. We prove the propagation of chaos on the path space of the particles and establish that the limiting trajectory of the empirical measure of the states of the particles satisfies a deterministic differential equation. This deterministic differential equation involves the time averages of the environment process. We apply our results to analyze the performance of communication networks where users access some resources using random distributed multi-access algorithms. For these networks, we show that the environment process corresponds to a process describing the number of clients in a certain loss network, which allows us provide simple and explicit expressions of the network performance.Comment: 31 pages, 2 figure

    The analysis of achieving TCP fairness in IEEE 802.11 infrastructure WLAN

    Get PDF
    This paper raising the TCP fairness issues that reviewed from three aspects; per-flow, per-station, and per-rate based on the IEEE 802.11 Wireless Local Area Networks (WLANs) environment.Due to the strong drive towards wireless Internet access via mobile devices, these issues must be carefully handled in order to build improved systems. We succinctly review and categorize the TCP fairness characteristic and then outline the problems and solutions from previous works through comparative table.Finally, we considered the future direction for solving these problems.Overall this paper summarizes current state of knowledge of the WLAN TCP fairness

    Rigorous and Practical Proportional-fair Allocation for Multi-rate Wi-Fi

    Get PDF
    Recent experimental studies confirm the prevalence of the widely known performance anomaly problem in current Wi-Fi networks, and report on the severe network utility degradation caused by this phenomenon. Although a large body of work addressed this issue, we attribute the refusal of prior solutions to their poor implementation feasibility with off-the-shelf hardware and their impre- cise modelling of the 802.11 protocol. Their applicability is further challenged today by very high throughput enhancements (802.11n/ac) whereby link speeds can vary by two orders of magnitude. Unlike earlier approaches, in this paper we introduce the first rigorous analytical model of 802.11 stations’ throughput and airtime in multi-rate settings, without sacrificing accuracy for tractability. We use the proportional-fair allocation criterion to formulate network utility maximisation as a con- vex optimisation problem for which we give a closed-form solution. We present a fully functional light-weight implementation of our scheme on commodity access points and evaluate this extensively via experiments in a real deployment, over a broad range of network conditions. Results demonstrate that our proposal achieves up to 100% utility gains, can double video streaming goodput and reduces TCP download times by 8x

    Cooperative Jamming in Wireless Networks - Turning Attacks into Privacy Protection

    Get PDF
    Generally, collisions between packets are undesired in wireless networks. We design this scheme, Cooperative Jamming in Wireless Networks (CJWN), to make use of collision to protect secret DATA packets from being sniffed by a nearby eavesdropper. We are intending to greatly increase the Packet Error Rate (PER) at the eavesdropper when the PER at the receiver is maintained at an acceptable level. This scheme is not intended to completely take the place of various encryption/decryption schemes which are working based on successfully received packets. Adding CJWN to the popular CSMA/CA adopted in IEEE 802.11 will add more security even the key for encryption/decryption is already exposed. Because the overhead of CJWN is very big, we do not suggest using it on every transmission. When some secret packets have a high requirement of confidentiality, CJWN is worth trying at the cost of throughput performance and power
    corecore