687 research outputs found

    A general wavelet-based profile decomposition in the critical embedding of function spaces

    Full text link
    We characterize the lack of compactness in the critical embedding of functions spaces X⊂YX\subset Y having similar scaling properties in the following terms : a sequence (un)n≥0(u_n)_{n\geq 0} bounded in XX has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0(\phi_l)_{l>0} such that the remainder converges to zero in YY as the number of functions in the sum and nn tend to +∞+\infty. Such a decomposition was established by G\'erard for the embedding of the homogeneous Sobolev space X=H˙sX=\dot H^s into the Y=LpY=L^p in dd dimensions with 0<s=d/2−d/p0<s=d/2-d/p, and then generalized by Jaffard to the case where XX is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular we identify two generic properties on the spaces XX and YY that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of XX and YY satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older and BMO spaces.Comment: 24 page

    Gabor frames and asymptotic behavior of Schwartz distributions

    Get PDF
    We obtain characterizations of asymptotic properties of Schwartz distribution by using Gabor frames. Our characterizations are indeed Tauberian theorems for shift asymptotics (S-asymptotics) in terms of short-time Fourier transforms with respect to windows generating Gabor frames. For it, we show that the Gabor coefficient operator provides (topological) isomorphisms of the spaces of tempered distributions S′(Rd)\mathcal{S}'(\mathbb{R}^d) and distributions of exponential type K1′(Rd)\mathcal{K}'_{1}(\mathbb{R}^{d}) onto their images

    Wavelet frame bijectivity on Lebesgue and Hardy spaces

    Full text link
    We prove a sufficient condition for frame-type wavelet series in LpL^p, the Hardy space H1H^1, and BMO. For example, functions in these spaces are shown to have expansions in terms of the Mexican hat wavelet, thus giving a strong answer to an old question of Meyer. Bijectivity of the wavelet frame operator acting on Hardy space is established with the help of new frequency-domain estimates on the Calder\'on-Zygmund constants of the frame kernel.Comment: 23 pages, 7 figure

    A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators

    Full text link
    This chapter offers a detailed survey on intrinsically localized frames and the corresponding matrix representation of operators. We re-investigate the properties of localized frames and the associated Banach spaces in full detail. We investigate the representation of operators using localized frames in a Galerkin-type scheme. We show how the boundedness and the invertibility of matrices and operators are linked and give some sufficient and necessary conditions for the boundedness of operators between the associated Banach spaces.Comment: 32 page

    Besov priors for Bayesian inverse problems

    Get PDF
    We consider the inverse problem of estimating a function uu from noisy, possibly nonlinear, observations. We adopt a Bayesian approach to the problem. This approach has a long history for inversion, dating back to 1970, and has, over the last decade, gained importance as a practical tool. However most of the existing theory has been developed for Gaussian prior measures. Recently Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct Besov prior measures, based on wavelet expansions with random coefficients, and used these prior measures to study linear inverse problems. In this paper we build on this development of Besov priors to include the case of nonlinear measurements. In doing so a key technical tool, established here, is a Fernique-like theorem for Besov measures. This theorem enables us to identify appropriate conditions on the forward solution operator which, when matched to properties of the prior Besov measure, imply the well-definedness and well-posedness of the posterior measure. We then consider the application of these results to the inverse problem of finding the diffusion coefficient of an elliptic partial differential equation, given noisy measurements of its solution.Comment: 18 page
    • …
    corecore