45,687 research outputs found

    Optimal Taylor-Couette flow: direct numerical simulations

    Get PDF
    We numerically simulate turbulent Taylor-Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh-B\'enard flow. Reynolds numbers of Rei=8β‹…103Re_i=8\cdot10^3 and Reo=Β±4β‹…103Re_o=\pm4\cdot10^3 of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers Ta up to 10810^8. Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente turbulent Taylor-Couette (T3CT^3C) setup and with a similar facility in Maryland at very high Reynolds numbers have revealed an optimum transport at a certain non-zero rotation rate ratio a=βˆ’Ο‰o/Ο‰ia = -\omega_o / \omega_i of about aopt=0.33βˆ’0.35a_{opt}=0.33-0.35. For large enough TaTa in the numerically accessible range we also find such an optimum transport at non-zero counter-rotation. The position of this maximum is found to shift with the driving, reaching a maximum of aopt=0.15a_{opt}=0.15 for Ta=2.5β‹…107Ta=2.5\cdot10^7. An explanation for this shift is elucidated, consistent with the experimental result that aopta_{opt} becomes approximately independent of the driving strength for large enough Reynolds numbers. We furthermore numerically calculate the angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between the local angular velocity profiles and the global transport quantities.Comment: Under consideration for publication in JFM, 31 pages, 25 figure

    Measure preserving homomorphisms and independent sets in tensor graph powers

    Get PDF
    In this note, we study the behavior of independent sets of maximum probability measure in tensor graph powers. To do this, we introduce an upper bound using measure preserving homomorphisms. This work extends some previous results about independence ratios of tensor graph powers.Comment: 5 page

    An Exact No Free Lunch Theorem for Community Detection

    Full text link
    A precondition for a No Free Lunch theorem is evaluation with a loss function which does not assume a priori superiority of some outputs over others. A previous result for community detection by Peel et al. (2017) relies on a mismatch between the loss function and the problem domain. The loss function computes an expectation over only a subset of the universe of possible outputs; thus, it is only asymptotically appropriate with respect to the problem size. By using the correct random model for the problem domain, we provide a stronger, exact No Free Lunch theorem for community detection. The claim generalizes to other set-partitioning tasks including core/periphery separation, kk-clustering, and graph partitioning. Finally, we review the literature of proposed evaluation functions and identify functions which (perhaps with slight modifications) are compatible with an exact No Free Lunch theorem
    • …
    corecore