8 research outputs found

    Event-Based control of depth of hypnosis in anesthesia

    Get PDF
    Background and Objective: In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. Methods: A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. Results: The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. Conclusions: The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable

    Universal direct tuner for loop control in industry

    Get PDF
    This paper introduces a direct universal (automatic) tuner for basic loop control in industrial applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding slope of the loop frequency response is identified by single test suitable for industrial applications. The proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and has been validated in a wide range of common and exotic processes in simulation and experimental conditions. The method is very robust to noise, an important feature for real life industrial applications. Comparison is performed with other well-known methods, such as approximate M-constrained integral gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods, i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity between the results, whereas the direct method has the advantage of skipping this intermediate step of identification. The control structure is the most commonly used in industry, i.e., proportional-integral-derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the proposed method, we use a direct relation between the integral and derivative gains. This enables the user to have in the tuning structure the advantages of the derivative action, therefore much improving the potential of good performance in real life control applications

    Automatic Control of General Anesthesia: New Developments and Clinical Experiments

    Get PDF
    L’anestesia generale è uno stato di coma farmacologicamente indotto, temporaneo e reversibile. Il suo obiettivo consiste nel provocare la perdita totale della coscienza e nel sopprimere la percezione del dolore. Essa costituisce un aspetto fondamentale per la medicina moderna in quanto consente di praticare interventi chirurgici invasivi senza causare ansia e dolore al paziente. Nella pratica clinica dell’anestesia totalmente endovenosa questi effetti vengono generalmente ottenuti mediante la somministrazione simultanea del farmaco ipnotico propofol e del farmaco analgesico remifentanil. Il dosaggio di questi farmaci viene gestito dal medico anestesista basandosi su linee guida farmacologiche e monitorando la risposta clinica del paziente. Recenti sviluppi nelle tecniche di elaborazione dei segnali fisiologici hanno consentito di ottenere degli indicatori quantitativi dello stato anestetico del paziente. Tali indicatori possono essere utilizzati come segnali di retroazione per sistemi di controllo automatico dell'anestesia. Lo sviluppo di questi sistemi ha come obiettivo quello di fornire uno strumento di supporto per l'anestesista. Il lavoro presentato in questa tesi è stato svolto nell'ambito del progetto di ricerca riguardante il controllo automatico dell'anestesia attivo presso l'Università degli Studi di Brescia. Esso è denominato ACTIVA (Automatic Control of Total IntraVenous Anesthesia) ed è il risultato della collaborazione tra il Gruppo di Ricerca sui Sistemi di Controllo dell’Università degli Studi di Brescia e l’Unità Operativa Anestesia e Rianimazione 2 degli Spedali Civili di Brescia. L’obiettivo del progetto ACTIVA consiste nello sviluppo teorico, nell’implementazione e nella validazione clinica di strategie di controllo innovative per il controllo automatico dell’anestesia totalmente endovenosa. Nel dettaglio, in questa tesi vengono inizialmente presentati i risultati sperimentali ottenuti con strutture di controllo basate sull'algoritmo PID e PID ad eventi per la somministrazione di propofol e remifentanil. Viene poi presentato lo sviluppo teorico e la validazione clinica di strutture di controllo predittivo basate su modello. Successivamente vengono presentati i risultati di uno studio in simulazione riguardante una soluzione di controllo innovativa che consente all'anestesista di regolare esplicitamente il bilanciamento tra propofol e remifentanil. Infine, vengono presentati gli sviluppi teorici ed i relativi studi in simulazione riguardanti soluzioni di controllo personalizzate per le fasi di induzione e mantenimento dell'anestesia.General anesthesia is a state of pharmacologically induced, temporary and reversible coma. Its goal is to cause total loss of consciousness and suppress the perception of pain. It constitutes a fundamental aspect of modern medicine as it allows invasive surgical procedures to be performed without causing anxiety and pain to the patient. In the clinical practice of total intravenous anesthesia, these effects are generally obtained by the simultaneous administration of the hypnotic drug propofol and of the analgesic drug remifentanil. The dosing of these drugs is managed by the anesthesiologist on the basis of pharmacological guidelines and by monitoring the patient's clinical response. Recent developments in physiological signal processing techniques have introduced the possibility to obtain quantitative indicators of the patient's anesthetic state. These indicators can be used as feedback signals for automatic anesthesia control systems. The development of these systems aims to provide a support tool for the anesthesiologist. The work presented in this thesis has been carried out in the framework of the research project concerning the automatic control anesthesia at the University of Brescia. The project is called ACTIVA (Automatic Control of Total IntraVenous Anesthesia) and is the result of the collaboration between the Research Group on Control Systems of the University of Brescia and the Anesthesia and Intensive Care Unit 2 of the Spedali Civili di Brescia. The objective of the ACTIVA project consists in the theoretical development, implementation, and clinical validation of innovative control strategies for the automatic control of total intravenous anesthesia. In detail, in this thesis the experimental results obtained with control structures based on the PID and on event-based PID controllers for the administration of propofol and remifentanil are initially presented. The theoretical development and clinical validation of model predictive control strategies is then proposed. Next, the results of a simulation study regarding an innovative control solution that allows the anesthesiologist to explicitly adjust the balance between propofol and remifentanil are given. Finally, the theoretical developments and the relative simulation studies concerning personalized control solutions for induction and maintenance phases of anesthesia are explained

    Event-based MPC for propofol administration in anesthesia

    Get PDF
    Background and Objective : The automatic control of anesthesia is a demanding task mostly due to the presence of nonlinearities, intra- and inter-patient variability and specific clinical requirements to be meet. The traditional approach to achieve the desired depth of hypnosis level is based on knowledge and experience of the anesthesiologist. In contrast to a typical automatic control system, their actions are based on events that are related to the effect of the administrated drug. Thus, it is interesting to build a control system that will be able to mimic the behavior of the human way of actuation, simultaneously keeping the advantages of an automatic system.Methods : In this work, an event-based model predictive control system is proposed and analyzed. The nonlinear patient model is used to form the predictor structure and its linear part is exploited to design the predictive controller, resulting in an individualized approach. In such a scenario, the BIS is the controlled variable and the propofol infusion rate is the control variable. The event generator governs the computation of control action applying a dead-band sampling technique. The proposed control architecture has been tested in simulation considering process noise and unmeasurable disturbances. The evaluation has been made for a set of patients using nonlinear pharmacokinetic/pharmacodynamic models allowing realistic tests scenarios, including inter- and intra-patient variability.Results For the considered patients dataset the number of control signal changes has been reduced of about 55% when compared to the classical control system approach and the drug usage has been reduced of about 2%. At the same time the control performance expressed by the integrated absolute error has been degraded of about 11%.Conclusions : The event-based MPC control system meets all the clinical requirements. The robustness analysis also demonstrates that the event-based architecture is able to satisfy the specifications in the presence of significant process noise and modelling errors related to inter- and intra-patient variability, providing a balanced solution between complexity and performance. (c) 2022 Elsevier B.V. All rights reserved

    Event-based fractional order control

    Get PDF
    The present study provides a generalization of event-based control to the field of fractional calculus, combining the benefits brought by the two approaches into an industrial-suitable control strategy. During recent years, control applications based on fractional order differintegral operators have gained more popularity due to their proven superior performance when compared to classical, integer order, control strategies. However, the current industrial setting is not yet prepared to fully adapt to complex fractional order control implementations that require hefty computational resources; needing highly-efficient methods with minimum control effort. The solution to this particular problem lies in combining benefits of event-based control such as resource optimization and bandwidth allocation with the superior performance of fractional order control. Theoretical and implementation aspects are developed in order to provide a generalization of event-based control into the fractional calculus field. Different numerical examples validate the proposed methodology, providing a useful tool, especially for industrial applications where the event-based control is most needed. Several event-based fractional order implementation possibilities are explored, the final result being an event-based fractional order control methodology. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University

    Robust controller design: Recent emerging concepts for control of mechatronic systems

    Get PDF
    The recent industrial revolution puts competitive requirements on most manufacturing and mechatronic processes. Some of these are economic driven, but most of them have an intrinsic projection on the loop performance achieved in most of closed loops across the various process layers. It turns out that successful operation in a globalization context can only be ensured by robust tuning of controller parameter as an effective way to deal with continuously changing end-user specs and raw product properties. Still, ease of communication in non-specialised process engineering vocabulary must be ensured at all times and ease of implementation on already existing platforms is preferred. Specifications as settling time, overshoot and robustness have a direct meaning in terms of process output and remain most popular amongst process engineers. An intuitive tuning procedure for robustness is based on linear system tools such as frequency response and bandlimited specifications thereof. Loop shaping remains a mature and easy to use methodology, although its tools such as Hinf remain in the shadow of classical PID control for industrial applications. Recently, next to these popular loop shaping methods, new tools have emerged, i.e. fractional order controller tuning rules. The key feature of the latter group is an intrinsic robustness to variations in the gain, time delay and time constant values, hence ideally suited for loop shaping purpose. In this paper, both methods are sketched and discussed in terms of their advantages and disadvantages. A real life control application used in mechatronic applications illustrates the proposed claims. The results support the claim that fractional order controllers outperform in terms of versatility the Hinf control, without losing the generality of conclusions. The paper pleads towards the use of the emerging tools as they are now ready for broader use, while providing the reader with a good perspective of their potential

    On the Tuning of a PIDPlus Control System with a Noise-filtering Event Generator

    No full text
    In this paper we analyze the tuning of a PIDPlus event-based control scheme with a noise-filtering event generator. In particular, different well-known PID tuning rules have been considered with different processes. A comparison with a standard PID control scheme has been also considered to evaluate the event generator effectiveness. It is shown that, independently from the employed tuning rule, the application of the devised event generator provides the advantage of reducing the variability of the manipulated variable in the presence of high-frequency measurement noise

    Event-based control tuning of propofol and remifentanil coadministration for general anaesthesia

    No full text
    In this study, the authors present robust tuning rules for an event-based control architecture for the automatic regulation of the depth of hypnosis in anaesthesia. The authors' control system uses propofol and remifentanil coadministration as control variables and the bispectral index as controlled variable. The control system is based on a PIDPlus controller combined with an event generator that detects significant variations of the BIS signal, thus providing strong filtering of the noise. A fixed ratio between the drug infusions allows the anaesthesiologist to explicitly regulate the opioid-hypnotic balance of the anaesthesia. The tuning rules are developed by solving a min-max optimisation problem that optimises the worst-case scenario over a given data set of patient models. A gain scheduling strategy yields optimal performance in both the induction and the maintenance phases of anaesthesia. Finally, through the Monte Carlo method, they validate the effectiveness of the proposed approach on a general population, and the robustness to the intra- and inter-patient variability for different infusion balances
    corecore