319 research outputs found

    Investigation of zero-crossings as information carriers

    Get PDF
    Analysis of bandlimited signal transmission by zero crossings of optimum signa

    Average sampling of band-limited stochastic processes

    Full text link
    We consider the problem of reconstructing a wide sense stationary band-limited process from its local averages taken either at the Nyquist rate or above. As a result, we obtain a sufficient condition under which average sampling expansions hold in mean square and for almost all sample functions. Truncation and aliasing errors of the expansion are also discussed

    On causal extrapolation of sequences with applications to forecasting

    Full text link
    The paper suggests a method of extrapolation of notion of one-sided semi-infinite sequences representing traces of two-sided band-limited sequences; this features ensure uniqueness of this extrapolation and possibility to use this for forecasting. This lead to a forecasting method for more general sequences without this feature based on minimization of the mean square error between the observed path and a predicable sequence. These procedure involves calculation of this predictable path; the procedure can be interpreted as causal smoothing. The corresponding smoothed sequences allow unique extrapolations to future times that can be interpreted as optimal forecasts.Comment: arXiv admin note: substantial text overlap with arXiv:1111.670

    Time shifted aliasing error upper bounds for truncated sampling cardinal series

    Get PDF
    AbstractTime shifted aliasing error upper bound extremals for the sampling reconstruction procedure are fully characterized. Sharp upper bounds are found on the aliasing error of truncated cardinal series and the corresponding extremals are described for entire functions from certain specific Lp, p>1, classes. Analogous results are obtained in multidimensional regular sampling. Truncation error analysis is provided in all cases considered. Moreover, sharpness of bounding inequalities, convergence rates and various sufficient conditions are discussed

    Spatiospectral concentration of vector fields on a sphere

    Full text link
    We construct spherical vector bases that are bandlimited and spatially concentrated, or, alternatively, spacelimited and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of Slepian, Landau, and Pollak we concentrate the energy of our function bases into arbitrarily shaped regions of interest on the sphere, and within certain bandlimits in the vector spherical-harmonic domain. As with the concentration problem for scalar functions on the sphere, which has been treated in detail elsewhere, a Slepian vector basis can be constructed by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate problems for the radial and tangential components. For regions with advanced symmetry such as polar caps, the spectral concentration kernel matrix is very easily calculated and block-diagonal, lending itself to efficient diagonalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that only depends on the area of the target region and the maximal spherical-harmonic degree or bandwidth. The spherical Slepian vector basis is doubly orthogonal, both over the entire sphere and over the geographic target region. Like its scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields in optics, antenna theory and medical imaging.Comment: Submitted to Applied and Computational Harmonic Analysi
    corecore