23,904 research outputs found

    Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping

    Get PDF
    We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel

    The 5 ' untranslated region of protein kinase C delta directs translation by an internal ribosome entry segment that is most active in densely growing cells and during apoptosis.

    Get PDF
    Protein kinase Cdelta (PKCdelta) is a member of the PKC family of phospholipid-dependent serine/threonine kinases and is involved in cell proliferation, apoptosis, and differentiation. Previous studies have suggested that different PKC isoforms might be translationally regulated. We report here that the 395-nt-long 5' untranslated region (5' UTR) of PKCdelta is predicted to form very stable secondary structures with free energies (DeltaG values) of around -170 kcal/mol. The 5' UTR of PKCdelta can significantly repress luciferase translation in rabbit reticulocyte lysate but does not repress luciferase translation in a number of transiently transfected cell lines. By using a bicistronic luciferase reporter, we show that the 5' UTR of PKCdelta contains a functional internal ribosome entry segment (IRES). The activity of the PKCdelta IRES is greatest in densely growing cells and during apoptosis, when total protein synthesis and levels of full-length eukaryotic initiation factor 4G are reduced. However, the IRES activity of the 5' UTR of PKCdelta is not enhanced during serum starvation, another condition shown to inhibit cap-dependent translation, suggesting that its potency is dependent on specific cellular conditions. Accumulating data suggest that PKCdelta has a function as proliferating cells reach high density and in early and later events of apoptosis. Our studies suggest a mechanism whereby PKCdelta synthesis can be maintained under these conditions when cap-dependent translation is inhibited

    JNK inhibition sensitises hepatocellular carcinoma cells but not normal hepatocytes to the TNF-related apoptosis-inducing ligand.

    Get PDF
    Background: cJun terminal kinase (JNK) is constitutively activated in most hepatocellular carcinomas (HCCs), yet its exact role in carcinogenesis remains controversial. While tumour necrosis factor (TNF)-related apoptosisinducing ligand (TRAIL) is known as a major mediator of acquired immune tumour surveillance, and is currently being tested in clinical trials as a novel cancer therapy, the resistance of many tumours to TRAIL and concerns about its toxicity in vivo represent obstacles to its clinical application. In this study we investigated whether JNK activity in HCC could contribute to the resistance to apoptosis in these tumours. Methods: The effect of JNK/Jun inhibition on receptormediated apoptosis was analysed by pharmacological inhibition or RNA interference in cancer cells and nontumour cells isolated from human liver or transgenic mice lacking a phosphorylation site for Jun. Results: JNK inhibition caused cell cycle arrest, enhanced caspase recruitment, and greatly sensitised HCC cells but not normal hepatocytes to TRAIL. TRAILinduced activation of JNK could be effectively interrupted by administration of the JNK inhibitor SP600125. Conclusions: Expression and TRAIL-dependent feedback activation of JNK likely represent a mechanism by which cancer cells escape TRAIL-mediated tumour surveillance. JNK inhibition might represent a novel strategy for specifically sensitising HCC cells to TRAIL thus opening promising therapeutic perspectives for safe and effective use of TRAIL in cancer treatment

    Finite automata for testing uniqueness of Eulerian trails

    Get PDF
    We investigate the condition under which the Eulerian trail of a digraph is unique, and design a finite automaton to examine it. The algorithm is effective, for if the condition is violated, it will be noticed immediately without the need to trace through the whole trail

    A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes

    Get PDF
    Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Chicken BAFF

    Get PDF
    Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells

    Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to altered dysbindin-1 gene expression

    Get PDF
    DTNBP1 (dystrobrevin binding protein 1) remains one of the top candidate genes in schizophrenia. Reduced expression of this gene and the protein it encodes, dysbindin-1, has been reported in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia cases. It has not been established, however, if all dysbindin-1 isoforms are reduced in the DLPFC or if the reduction is associated with reduced DTNBP1 gene expression. Using Western blotting of whole-tissue lysates of the DLPFC with antibodies differentially sensitive to the three major isoforms of this protein (dysbindin-1A, -1B, and -1C), we found no significant differences between our schizophrenia cases and matched controls in dysbindin-1A or -1B, but did find a mean 46% reduction in dysbindin-1C in 71% of 28 case-control pairs (p = 0.022). This occurred in the absence of the one DTNBP1 risk haplotype for schizophrenia reported in the US and without alteration in levels of dysbindin-1C transcripts. Conversely, the absence of changes in the dysbindin-1A and -1B isoforms was accompanied by increased levels of their transcripts. We thus found no correspondence between alterations in dysbindin-1 gene and protein expression, the latter of which might be due to posttranslational modifications such as ubiquitination. Reduced DLPFC dysbindin-1C in schizophrenia probably occurs in PSDs, where we find dysbindin-1C to be heavily concentrated in the human brain. Given known postsynaptic effects of dysbindin-1 reductions in the rodent homolog of the prefrontal cortex, these findings suggest that reduced dysbindin-1C in the DLPFC may contribute to cognitive deficits of schizophrenia by promoting NMDA receptor hypofunction
    • …
    corecore