2,527 research outputs found

    Wave relations

    Full text link
    The wave equation (free boson) problem is studied from the viewpoint of the relations on the symplectic manifolds associated to the boundary induced by solutions. Unexpectedly there is still something to say on this simple, well-studied problem. In particular, boundaries which do not allow for a meaningful Hamiltonian evolution are not problematic from the viewpoint of relations. In the two-dimensional Minkowski case, these relations are shown to be Lagrangian. This result is then extended to a wide class of metrics and is conjectured to be true also in higher dimensions for nice enough metrics. A counterexample where the relation is not Lagrangian is provided by the Misner space.Comment: 27 pages; minor clarifying changes added; to appear in CM

    Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    Full text link
    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.Comment: 26 pages, 7 figure
    • …
    corecore