185,221 research outputs found

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Bivariate Gamma Distributions for Image Registration and Change Detection

    Get PDF
    This paper evaluates the potential interest of using bivariate gamma distributions for image registration and change detection. The first part of this paper studies estimators for the parameters of bivariate gamma distributions based on the maximum likelihood principle and the method of moments. The performance of both methods are compared in terms of estimated mean square errors and theoretical asymptotic variances. The mutual information is a classical similarity measure which can be used for image registration or change detection. The second part of the paper studies some properties of the mutual information for bivariate Gamma distributions. Image registration and change detection techniques based on bivariate gamma distributions are finally investigated. Simulation results conducted on synthetic and real data are very encouraging. Bivariate gamma distributions are good candidates allowing us to develop new image registration algorithms and new change detectors

    Thermoelectric response of Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4}: evidence for strong correlation and low carrier density

    Full text link
    We present a study of the Seebeck and Nernst coefficients of Fe1+y_{1+y}Te1x_{1-x}Sex_{x} extended up to 28 T. The large magnitude of the Seebeck coefficient in the optimally doped sample tracks a remarkably low normalized Fermi temperature, which, like other correlated superconductors, is only one order of magnitude larger than Tc_c. We combine our data with other experimentally measured coefficients of the system to extract a set of self-consistent parameters, which identify Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4} as a low-density correlated superconductor barely in the clean limit. The system is subject to strong superconducting fluctuations with a sizeable vortex Nernst signal in a wide temperature window.Comment: 4 pages including 4 figure

    Anomalous roughening of wood fractured surfaces

    Full text link
    Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of two different and independent roughness exponents. We determine the local roughness exponents ζloc{\zeta}_{loc} to be 0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness exponent. The global roughness exponent is different for both woods, ζ\zeta = 1.60 for spruce and ζ\zeta = 1.35 for pine. We argue that the global roughness exponent ζ\zeta is a good index for material characterization.Comment: 7 two columns pages plus 8 ps figures, uses psfig. To appear in Physical Review

    Using of aerogel to improve thermal insulating properties of windows

    Get PDF
    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.Web of Science14111

    BayesX: Analysing Bayesian structured additive regression models

    Get PDF
    There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models
    corecore