18,169 research outputs found

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    Public health and landfill sites

    Get PDF
    Landfill management is a complex discipline, requiring very high levels of organisation, and considerable investment. Until the early 1990’s most Irish landfill sites were not managed to modern standards. Illegal landfill sites are, of course, usually not managed at all. Landfills are very active. The traditional idea of ‘put it in the ground and forget about it’ is entirely misleading. There is a lot of chemical and biological activity underground. This produces complex changes in the chemistry of the landfill, and of the emissions from the site. The main emissions of concern are landfill gases and contaminated water (which is known as leachate). Both of these emissions have complex and changing chemical compositions, and both depend critically on what has been put into the landfill. The gases spread mainly through the atmosphere, but also through the soil, while the leachate (the water) spreads through surface waters and the local groundwater. Essentially all unmanaged landfills will discharge large volumes of leachate into the local groundwater. In sites where the waste accepted has been properly regulated, and where no hazardous wastes are present, there is a lot known about the likely composition of this leachate and there is some knowledge of its likely biological and health effects. This is not the case for poorly regulated sites, where the composition of the waste accepted is unknown. It is possible to monitor the emissions from landfills, and to reduce some of the adverse health and environmental effects of these. These emissions, and hence the possible health effects, depend greatly on the content of the landfill, and on the details of the local geology and landscape. There is insufficient evidence to demonstrate a clear link between cancers and exposure to landfill, however, it is noted that there may be an association with adverse birth outcomes such as low birth weight and birth defects. It should be noted, however, that modern landfills, run in strict accordance with standard operation procedures, would have much less impact on the health of residents living in proximity to the site

    Modeling and simulation of defect induced faults in CMOS IC's

    Get PDF

    "Why me, why now?" Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection

    Get PDF
    BACKGROUND: The prevalence of nontuberculous mycobacterial (NTM) disease is rising. An understanding of known risk factors for disease sheds light on the immunological and physical barriers to infection, and how and why they may be overcome. This review focuses on human NTM infection, supported by experimental and in vitro data of relevance to the practising clinician who seeks to understand why their patient has NTM infection and how to further investigate. DISCUSSION: First, the underlying immune response to NTM disease is examined. Important insights regarding NTM disease susceptibility come from nature's own knockouts, the primary immune deficiency disorders. We summarise the current knowledge surrounding interferon-gamma (IFNγ)-interleukin-12 (IL-12) axis abnormalities, followed by a review of phagocytic defects, T cell lymphopenia and rarer genetic conditions known to predispose to NTM disease. We discuss how these define key immune pathways involved in the host response to NTM. Iatrogenic immunosuppression is also important, and we evaluate the impact of novel biological therapies, as well as bone marrow transplant and chemotherapy for solid organ malignancy, on the epidemiology and presentation of NTM disease, and discuss the host defence dynamics thus revealed. NTM infection and disease in the context of other chronic illnesses including HIV and malnutrition is reviewed. The role of physical barriers to infection is explored. We describe how their compromise through different mechanisms including cystic fibrosis, bronchiectasis and smoking-related lung disease can result in pulmonary NTM colonisation or infection. We also summarise further associations with host factors including body habitus and age. We use the presented data to develop an over-arching model that describes human host defences against NTM infection, where they may fail, and how this framework can be applied to investigation in routine clinical practice
    corecore