43 research outputs found

    Hyperforests on the Complete Hypergraph by Grassmann Integral Representation

    Full text link
    We study the generating function of rooted and unrooted hyperforests in a general complete hypergraph with n vertices by using a novel Grassmann representation of their generating functions. We show that this new approach encodes the known results about the exponential generating functions for the different number of vertices. We consider also some applications as counting hyperforests in the k-uniform complete hypergraph and the one complete in hyperedges of all dimensions. Some general feature of the asymptotic regimes for large number of connected components is discussed.Comment: 35 page

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    Counting packings of generic subsets in finite groups

    Full text link
    A packing of subsets S1,...,Sn\mathcal S_1,..., \mathcal S_n in a group GG is a sequence (g1,...,gn)(g_1,...,g_n) such that g1S1,...,gnSng_1\mathcal S_1,...,g_n\mathcal S_n are disjoint subsets of GG. We give a formula for the number of packings if the group GG is finite and if the subsets S1,...,Sn\mathcal S_1,...,\mathcal S_n satisfy a genericity condition. This formula can be seen as a generalization of the falling factorials which encode the number of packings in the case where all the sets Si\mathcal S_i are singletons
    corecore