3,636 research outputs found

    Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions

    Full text link
    In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects ({\mu}m-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed

    Weihrauch goes Brouwerian

    Full text link
    We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.Comment: 36 page

    Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation

    Get PDF
    As it is known from visible light experiments, silicon under femtosecond pulse irradiation can undergo the so-called 'nonthermal melting' if the density of electrons excited from the valence to the conduction band overcomes a certain critical value. Such ultrafast transition is induced by strong changes in the atomic potential energy surface, which trigger atomic relocation. However, heating of a material due to the electron-phonon coupling can also lead to a phase transition, called 'thermal melting'. This thermal melting can occur even if the excited-electron density is much too low to induce non-thermal effects. To study phase transitions, and in particular, the interplay of the thermal and nonthermal effects in silicon under a femtosecond x-ray irradiation, we propose their unified treatment by going beyond the Born-Oppenheimer approximation within our hybrid model based on tight binding molecular dynamics. With our extended model we identify damage thresholds for various phase transitions in irradiated silicon. We show that electron-phonon coupling triggers the phase transition of solid silicon into a low-density liquid phase if the energy deposited into the sample is above ∼0.65\sim0.65 eV per atom. For the deposited doses of over ∼0.9\sim0.9 eV per atom, solid silicon undergoes a phase transition into high-density liquid phase triggered by an interplay between electron-phonon heating and nonthermal effects. These thresholds are much lower than those predicted with the Born-Oppenheimer approximation (∼2.1\sim2.1 eV/atom), and indicate a significant contribution of electron-phonon coupling to the relaxation of the laser-excited silicon. We expect that these results will stimulate dedicated experimental studies, unveiling in detail various paths of structural relaxation within laser-irradiated silicon

    Electron-ion coupling in semiconductors beyond Fermi's golden rule

    Full text link
    In the present work, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement of simulation results with available experimental data

    A model of linear chain submonolayer structures. Application to Li/W(112) and Li/Mo(112)

    Full text link
    We propose a lattice gas model to account for linear chain structures adsorbed on (112) faces of W and Mo. The model includes a dipole-dipole interaction as well as a long-ranged indirect interaction. We have explicitly demonstrated that the periodic ground states depend on a competition between dipole-dipole and indirect interaction. The effect of temperature is studied within the molecular-field approximation. The numerical results show that for dipole-dipole interaction only, all long periodic linear chain phases are suppressed to low temperatures. However, when the long-range indirect interaction becomes important, the long-periodic linear chain phases start to fill up the phase diagram and develop a high thermal stability. Model parameters are chosen to reconstruct a sequence of long-periodic phases as observed experimentally for Li/Mo(112) and Li/W(112).Comment: RevTeX 9 pages + 5 Postscript figures (included), uses newdoc.sty (included), to be published in Surface Scienc
    • …
    corecore