27,564 research outputs found

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure

    Probabilistic Numerics and Uncertainty in Computations

    Full text link
    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data has led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimisers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.Comment: Author Generated Postprint. 17 pages, 4 Figures, 1 Tabl

    Bayesian sequential testing of the drift of a Brownian motion

    Get PDF
    We study a classical Bayesian statistics problem of sequentially testing the sign of the drift of an arithmetic Brownian motion with the 00-11 loss function and a constant cost of observation per unit of time for general prior distributions. The statistical problem is reformulated as an optimal stopping problem with the current conditional probability that the drift is non-negative as the underlying process. The volatility of this conditional probability process is shown to be non-increasing in time, which enables us to prove monotonicity and continuity of the optimal stopping boundaries as well as to characterize them completely in the finite-horizon case as the unique continuous solution to a pair of integral equations. In the infinite-horizon case, the boundaries are shown to solve another pair of integral equations and a convergent approximation scheme for the boundaries is provided. Also, we describe the dependence between the prior distribution and the long-term asymptotic behaviour of the boundaries.Comment: 28 page

    Exponentially Fast Parameter Estimation in Networks Using Distributed Dual Averaging

    Full text link
    In this paper we present an optimization-based view of distributed parameter estimation and observational social learning in networks. Agents receive a sequence of random, independent and identically distributed (i.i.d.) signals, each of which individually may not be informative about the underlying true state, but the signals together are globally informative enough to make the true state identifiable. Using an optimization-based characterization of Bayesian learning as proximal stochastic gradient descent (with Kullback-Leibler divergence from a prior as a proximal function), we show how to efficiently use a distributed, online variant of Nesterov's dual averaging method to solve the estimation with purely local information. When the true state is globally identifiable, and the network is connected, we prove that agents eventually learn the true parameter using a randomized gossip scheme. We demonstrate that with high probability the convergence is exponentially fast with a rate dependent on the KL divergence of observations under the true state from observations under the second likeliest state. Furthermore, our work also highlights the possibility of learning under continuous adaptation of network which is a consequence of employing constant, unit stepsize for the algorithm.Comment: 6 pages, To appear in Conference on Decision and Control 201

    Informational Substitutes

    Full text link
    We propose definitions of substitutes and complements for pieces of information ("signals") in the context of a decision or optimization problem, with game-theoretic and algorithmic applications. In a game-theoretic context, substitutes capture diminishing marginal value of information to a rational decision maker. We use the definitions to address the question of how and when information is aggregated in prediction markets. Substitutes characterize "best-possible" equilibria with immediate information aggregation, while complements characterize "worst-possible", delayed aggregation. Game-theoretic applications also include settings such as crowdsourcing contests and Q\&A forums. In an algorithmic context, where substitutes capture diminishing marginal improvement of information to an optimization problem, substitutes imply efficient approximation algorithms for a very general class of (adaptive) information acquisition problems. In tandem with these broad applications, we examine the structure and design of informational substitutes and complements. They have equivalent, intuitive definitions from disparate perspectives: submodularity, geometry, and information theory. We also consider the design of scoring rules or optimization problems so as to encourage substitutability or complementarity, with positive and negative results. Taken as a whole, the results give some evidence that, in parallel with substitutable items, informational substitutes play a natural conceptual and formal role in game theory and algorithms.Comment: Full version of FOCS 2016 paper. Single-column, 61 pages (48 main text, 13 references and appendix

    Functional Structure and Approximation in Econometrics (book front matter)

    Get PDF
    This is the front matter from the book, William A. Barnett and Jane Binner (eds.), Functional Structure and Approximation in Econometrics, published in 2004 by Elsevier in its Contributions to Economic Analysis monograph series. The front matter includes the Table of Contents, Volume Introduction, and Section Introductions by Barnett and Binner and the Preface by W. Erwin Diewert. The volume contains a unified collection and discussion of W. A. Barnett's most important published papers on applied and theoretical econometric modelling.consumer demand, production, flexible functional form, functional structure, asymptotics, nonlinearity, systemwide models
    • …
    corecore