588 research outputs found

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    A low memory, highly concurrent multigrid algorithm

    Full text link
    We examine what is an efficient and scalable nonlinear solver, with low work and memory complexity, for many classes of discretized partial differential equations (PDEs) - matrix-free Full multigrid (FMG) with a Full Approximation Storage (FAS) - in the context of current trends in computer architectures. Brandt proposed an extremely low memory FMG-FAS algorithm over 25 years ago that has several attractive properties for reducing costs on modern - memory centric -- machines and has not been developed to our knowledge. This method, segmental refinement (SR), has very low memory requirements because the finest grids need not be held in memory at any one time but can be "swept" through, computing coarse grid correction and any quantities of interest, allowing for orders of magnitude reduction in memory usage. This algorithm has two useful ideas for effectively exploiting future architectures: improved data locality and reuse via "vertical" processing of the multigrid algorithms and the method of Ï„\tau-corrections, which allows for not storing the entire fine grids at any one time. This report develops this algorithm for a model problem and a parallel generalization of the original sweeping technique. We show that FMG-FAS-SR can work as originally predicted, solving systems accurately enough to maintain the convergence rate of the discretization with one FMG iteration, and that the parallel algorithm provides a natural approach to fully exploiting the available parallelism of FMG

    DAG-based software frameworks for PDEs

    Get PDF
    pre-printThe task-based approach to software and parallelism is well-known and has been proposed as a potential candidate, named the silver model, for exas-cale software. This approach is not yet widely used in the large-scale multi-core parallel computing of complex systems of partial differential equations. After surveying task-based approaches we investigate how well the Uintah software and an extension named Wasatch fit in the task-based paradigm and how well they perform on large scale parallel computers. The conclusion is that these approaches show great promise for petascale but that considerable algorithmic challenges remain

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures

    Get PDF
    A new solver featuring time-space adaptation and error control has been recently introduced to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume adaptive multiresolution and high order time integrators with specific stability properties for each operator, this strategy yields high computational efficiency for large multidimensional computations on standard architectures such as powerful workstations. However, the data structure of the original implementation, based on trees of pointers, provides limited opportunities for efficiency enhancements, while posing serious challenges in terms of parallel programming and load balancing. The present contribution proposes a new implementation of the whole set of numerical methods including Radau5 and ROCK4, relying on a fully different data structure together with the use of a specific library, TBB, for shared-memory, task-based parallelism with work-stealing. The performance of our implementation is assessed in a series of test-cases of increasing difficulty in two and three dimensions on multi-core and many-core architectures, demonstrating high scalability

    Multicoloring of grid-structured PDE solvers on shared-memorymultiprocessors

    Get PDF
    In order to execute a parallel PDE (partial differential equation) solver on a shared-memory multiprocessor, we have to avoid memory conflicts in accessing multidimensional data grids. A new multicoloring technique is proposed for speeding sparse matrix operations. The new technique enables parallel access of grid-structured data elements in the shared memory without causing conflicts. The coloring scheme is formulated as an algebraic mapping which can be easily implemented with low overhead on commercial multiprocessors. The proposed multicoloring scheme bas been tested on an Alliant FX/80 multiprocessor for solving 2D and 3D problems using the CGNR method. Compared to the results reported by Saad (1989) on an identical Alliant system, our results show a factor of 30 times higher performance in Mflops. Multicoloring transforms sparse matrices into ones with a diagonal diagonal block (DDB) structure, enabling parallel LU decomposition in solving PDE problems. The multicoloring technique can also be extended to solve other scientific problems characterized by sparse matrices.published_or_final_versio
    • …
    corecore