19,467 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    An Integrated Framework for Treebanks and Multilayer Annotations

    Full text link
    Treebank formats and associated software tools are proliferating rapidly, with little consideration for interoperability. We survey a wide variety of treebank structures and operations, and show how they can be mapped onto the annotation graph model, and leading to an integrated framework encompassing tree and non-tree annotations alike. This development opens up new possibilities for managing and exploiting multilayer annotations.Comment: 8 page

    NITELIGHT: A Graphical Tool for Semantic Query Construction

    No full text
    Query formulation is a key aspect of information retrieval, contributing to both the efficiency and usability of many semantic applications. A number of query languages, such as SPARQL, have been developed for the Semantic Web; however, there are, as yet, few tools to support end users with respect to the creation and editing of semantic queries. In this paper we introduce a graphical tool for semantic query construction (NITELIGHT) that is based on the SPARQL query language specification. The tool supports end users by providing a set of graphical notations that represent semantic query language constructs. This language provides a visual query language counterpart to SPARQL that we call vSPARQL. NITELIGHT also provides an interactive graphical editing environment that combines ontology navigation capabilities with graphical query visualization techniques. This paper describes the functionality and user interaction features of the NITELIGHT tool based on our work to date. We also present details of the vSPARQL constructs used to support the graphical representation of SPARQL queries

    Node Labels in Local Decision

    Get PDF
    The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment - in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013). In this work we give study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oracles ff that, for any given nn, provide a multiset f(n)f(n) of nn labels; then the adversary assigns the labels to the nn nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers. Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    The Joys of Graph Transformation

    Get PDF
    We believe that the technique of graph transformation offers a very natural way to specify semantics for languages that have dynamic allocation and linking structure; for instance, object-oriented programming languages, but also languages for mobility. In this note we expose, on a rather informal level, the reasons for this belief. Our hope in doing this is to raise interest in this technique and so generate more interest in the fascinating possibilities and open questions of this area.\u

    Graph-Controlled Insertion-Deletion Systems

    Full text link
    In this article, we consider the operations of insertion and deletion working in a graph-controlled manner. We show that like in the case of context-free productions, the computational power is strictly increased when using a control graph: computational completeness can be obtained by systems with insertion or deletion rules involving at most two symbols in a contextual or in a context-free manner and with the control graph having only four nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Equational reasoning with context-free families of string diagrams

    Full text link
    String diagrams provide an intuitive language for expressing networks of interacting processes graphically. A discrete representation of string diagrams, called string graphs, allows for mechanised equational reasoning by double-pushout rewriting. However, one often wishes to express not just single equations, but entire families of equations between diagrams of arbitrary size. To do this we define a class of context-free grammars, called B-ESG grammars, that are suitable for defining entire families of string graphs, and crucially, of string graph rewrite rules. We show that the language-membership and match-enumeration problems are decidable for these grammars, and hence that there is an algorithm for rewriting string graphs according to B-ESG rewrite patterns. We also show that it is possible to reason at the level of grammars by providing a simple method for transforming a grammar by string graph rewriting, and showing admissibility of the induced B-ESG rewrite pattern.Comment: International Conference on Graph Transformation, ICGT 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21145-9_
    corecore