505 research outputs found

    Supersaturation and stability for forbidden subposet problems

    Get PDF
    We address a supersaturation problem in the context of forbidden subposets. A family F\mathcal{F} of sets is said to contain the poset PP if there is an injection i:PFi:P \rightarrow \mathcal{F} such that pPqp \le_P q implies i(p)i(q)i(p) \subset i (q). The poset on four elements a,b,c,da,b,c,d with a,bc,da,b \le c,d is called butterfly. The maximum size of a family F2[n]\mathcal{F} \subseteq 2^{[n]} that does not contain a butterfly is Σ(n,2)=(nn/2)+(nn/2+1)\Sigma(n,2)=\binom{n}{\lfloor n/2 \rfloor}+\binom{n}{\lfloor n/2 \rfloor+1} as proved by De Bonis, Katona, and Swanepoel. We prove that if F2[n]\mathcal{F} \subseteq 2^{[n]} contains Σ(n,2)+E\Sigma(n,2)+E sets, then it has to contain at least (1o(1))E(n/2+1)(n/22)(1-o(1))E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2} copies of the butterfly provided E2n1εE\le 2^{n^{1-\varepsilon}} for some positive ε\varepsilon. We show by a construction that this is asymptotically tight and for small values of EE we show that the minimum number of butterflies contained in F\mathcal{F} is exactly E(n/2+1)(n/22)E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2}

    Symmetric Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

    Full text link
    We prove that the noncrossing partition lattices associated with the complex reflection groups G(d,d,n)G(d,d,n) for d,n2d,n\geq 2 admit symmetric decompositions into Boolean subposets. As a result, these lattices have the strong Sperner property and their rank-generating polynomials are symmetric, unimodal, and γ\gamma-nonnegative. We use computer computations to complete the proof that every noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus answering affirmatively a question raised by D. Armstrong.Comment: 30 pages, 5 figures, 1 table. Final version. The results of the initial version were extended to symmetric Boolean decompositions of noncrossing partition lattice

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    On the distribution of sums of residues

    Get PDF
    We generalize and solve the \roman{mod}\,q analogue of a problem of Littlewood and Offord, raised by Vaughan and Wooley, concerning the distribution of the 2n2^n sums of the form i=1nεiai\sum_{i=1}^n\varepsilon_ia_i, where each εi\varepsilon_i is 00 or 11. For all qq, nn, kk we determine the maximum, over all reduced residues aia_i and all sets PP consisting of kk arbitrary residues, of the number of these sums that belong to PP.Comment: 5 page

    The structure of the consecutive pattern poset

    Full text link
    The consecutive pattern poset is the infinite partially ordered set of all permutations where στ\sigma\le\tau if τ\tau has a subsequence of adjacent entries in the same relative order as the entries of σ\sigma. We study the structure of the intervals in this poset from topological, poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals are rank-unimodal and strongly Sperner, and we characterize disconnected and shellable intervals. We also show that most intervals are not shellable and have M\"obius function equal to zero.Comment: 29 pages, 7 figures. To appear in IMR

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    Forbidden subposet problems for traces of set families

    Get PDF
    In this paper we introduce a problem that bridges forbidden subposet and forbidden subconfiguration problems. The sets F1,F2,,FPF_1,F_2, \dots,F_{|P|} form a copy of a poset PP, if there exists a bijection i:P{F1,F2,,FP}i:P\rightarrow \{F_1,F_2, \dots,F_{|P|}\} such that for any p,pPp,p'\in P the relation p<Ppp<_P p' implies i(p)i(p)i(p)\subsetneq i(p'). A family F\mathcal{F} of sets is \textit{PP-free} if it does not contain any copy of PP. The trace of a family F\mathcal{F} on a set XX is FX:={FX:FF}\mathcal{F}|_X:=\{F\cap X: F\in \mathcal{F}\}. We introduce the following notions: F2[n]\mathcal{F}\subseteq 2^{[n]} is ll-trace PP-free if for any ll-subset L[n]L\subseteq [n], the family FL\mathcal{F}|_L is PP-free and F\mathcal{F} is trace PP-free if it is ll-trace PP-free for all lnl\le n. As the first instances of these problems we determine the maximum size of trace BB-free families, where BB is the butterfly poset on four elements a,b,c,da,b,c,d with a,b<c,da,b<c,d and determine the asymptotics of the maximum size of (ni)(n-i)-trace Kr,sK_{r,s}-free families for i=1,2i=1,2. We also propose a generalization of the main conjecture of the area of forbidden subposet problems
    corecore