44,255 research outputs found

    Linear Temporal Logic and Propositional Schemata, Back and Forth (extended version)

    Full text link
    This paper relates the well-known Linear Temporal Logic with the logic of propositional schemata introduced by the authors. We prove that LTL is equivalent to a class of schemata in the sense that polynomial-time reductions exist from one logic to the other. Some consequences about complexity are given. We report about first experiments and the consequences about possible improvements in existing implementations are analyzed.Comment: Extended version of a paper submitted at TIME 2011: contains proofs, additional examples & figures, additional comparison between classical LTL/schemata algorithms up to the provided translations, and an example of how to do model checking with schemata; 36 pages, 8 figure

    Lattice initial segments of the hyperdegrees

    Full text link
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh\mathcal{D}_{h}. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable locally finite lattice) is isomorphic to an initial segment of Dh\mathcal{D}_{h}. Corollaries include the decidability of the two quantifier theory of % \mathcal{D}_{h} and the undecidability of its three quantifier theory. The key tool in the proof is a new lattice representation theorem that provides a notion of forcing for which we can prove a version of the fusion lemma in the hyperarithmetic setting and so the preservation of ω1CK\omega _{1}^{CK}. Somewhat surprisingly, the set theoretic analog of this forcing does not preserve ω1\omega _{1}. On the other hand, we construct countable lattices that are not isomorphic to an initial segment of Dh\mathcal{D}_{h}
    • …
    corecore