12,156 research outputs found

    A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method

    Get PDF
    A numerical method for solving elliptic PDEs with variable coefficients on two-dimensional domains is presented. The method is based on high-order composite spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all stages of the computation when applied to problems with non-oscillatory solutions such as the Laplace and the Stokes equations. Numerical examples demonstrate that the scheme is capable of computing solutions with relative accuracy of 10−1010^{-10} or better, even for challenging problems such as highly oscillatory Helmholtz problems and convection-dominated convection diffusion equations. In terms of speed, it is demonstrated that a problem with a non-oscillatory solution that was discretized using 10810^{8} nodes was solved in 115 minutes on a personal work-station with two quad-core 3.3GHz CPUs. Since the solver is direct, and the "solution operator" fits in RAM, any solves beyond the first are very fast. In the example with 10810^{8} unknowns, solves require only 30 seconds.Comment: arXiv admin note: text overlap with arXiv:1302.599

    Unifying Projected Entangled Pair States contractions

    Full text link
    The approximate contraction of a Projected Entangled Pair States (PEPS) tensor network is a fundamental ingredient of any PEPS algorithm, required for the optimization of the tensors in ground state search or time evolution, as well as for the evaluation of expectation values. An exact contraction is in general impossible, and the choice of the approximating procedure determines the efficiency and accuracy of the algorithm. We analyze different previous proposals for this approximation, and show that they can be understood via the form of their environment, i.e. the operator that results from contracting part of the network. This provides physical insight into the limitation of various approaches, and allows us to introduce a new strategy, based on the idea of clusters, that unifies previous methods. The resulting contraction algorithm interpolates naturally between the cheapest and most imprecise and the most costly and most precise method. We benchmark the different algorithms with finite PEPS, and show how the cluster strategy can be used for both the tensor optimization and the calculation of expectation values. Additionally, we discuss its applicability to the parallelization of PEPS and to infinite systems (iPEPS).Comment: 28 pages, 15 figures, accepted versio

    Modeling of linear fading memory systems

    Get PDF
    Motivated by questions of approximate modeling and identification, we consider various classes of linear time-varying bounded-input-bounded output (BIBO) stable fading memory systems and the characterizations are proved. These include fading memory systems in general, almost periodic systems, and asymptotically periodic systems. We also show that the norm and strong convergence coincide for BIBO stable causal fading memory system

    Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states

    Full text link
    We derive fidelity benchmarks for the quantum storage and teleportation of squeezed states of continuous variable systems, for input ensembles where the degree of squeezing ss is fixed, no information about its orientation in phase space is given, and the distribution of phase space displacements is a Gaussian. In the limit where the latter becomes flat, we prove analytically that the maximal classical achievable fidelity (which is 1/2 without squeezing, for s=1s=1) is given by s/(1+s)\sqrt{s}/(1+s), vanishing when the degree of squeezing diverges. For mixed states, as well as for general distributions of displacements, we reduce the determination of the benchmarks to the solution of a finite-dimensional semidefinite program, which yields accurate, certifiable bounds thanks to a rigorous analysis of the truncation error. This approach may be easily adapted to more general ensembles of input states.Comment: 19 pages, 4figure
    • …
    corecore