15,436 research outputs found

    Evidences Behind Skype Outage

    Get PDF
    Skype is one of the most successful VoIP application in the current Internet spectrum. One of the most peculiar characteristics of Skype is that it relies on a P2P infrastructure for the exchange of signaling information amongst active peers. During August 2007, an unexpected outage hit the Skype overlay, yielding to a service blackout that lasted for more than two days: this paper aims at throwing light to this event. Leveraging on the use of an accurate Skype classification engine, we carry on an experimental study of Skype signaling during the outage. In particular, we focus on the signaling traffic before, during and after the outage, in the attempt to quantify interesting properties of the event. While it is very difficult to gather clear insights concerning the root causes of the breakdown itself, the collected measurement allow nevertheless to quantify several interesting aspects of the outage: for instance, measurements show that the outage caused, on average, a 3-fold increase of signaling traffic and a 10-fold increase of number of contacted peers, topping to more than 11 million connections for the most active node in our network - which immediately gives the feeling of the extent of the phenomeno

    PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

    Get PDF
    IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned
    • 

    corecore