15,136 research outputs found

    Energy-corrected FEM and explicit time-stepping for parabolic problems

    Full text link
    The presence of corners in the computational domain, in general, reduces the regularity of solutions of parabolic problems and diminishes the convergence properties of the finite element approximation introducing a so-called "pollution effect". Standard remedies based on mesh refinement around the singular corner result in very restrictive stability requirements on the time-step size when explicit time integration is applied. In this article, we introduce and analyse the energy-corrected finite element method for parabolic problems, which works on quasi-uniform meshes, and, based on it, create fast explicit time discretisation. We illustrate these results with extensive numerical investigations not only confirming the theoretical results but also showing the flexibility of the method, which can be applied in the presence of multiple singular corners and a three-dimensional setting. We also propose a fast explicit time-stepping scheme based on a piecewise cubic energy-corrected discretisation in space completed with mass-lumping techniques and numerically verify its efficiency

    Galerkin FEM for fractional order parabolic equations with initial data in H−s, 0<s≀1H^{-s},~0 < s \le 1

    Full text link
    We investigate semi-discrete numerical schemes based on the standard Galerkin and lumped mass Galerkin finite element methods for an initial-boundary value problem for homogeneous fractional diffusion problems with non-smooth initial data. We assume that Ω⊂Rd\Omega\subset \mathbb{R}^d, d=1,2,3d=1,2,3 is a convex polygonal (polyhedral) domain. We theoretically justify optimal order error estimates in L2L_2- and H1H^1-norms for initial data in H−s(Ω), 0≀s≀1H^{-s}(\Omega),~0\le s \le 1. We confirm our theoretical findings with a number of numerical tests that include initial data vv being a Dirac ÎŽ\delta-function supported on a (d−1)(d-1)-dimensional manifold.Comment: 13 pages, 3 figure

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α∈(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Error Analysis of Semidiscrete Finite Element Methods for Inhomogeneous Time-Fractional Diffusion

    Get PDF
    We consider the initial boundary value problem for the inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition and a nonsmooth right hand side data in a bounded convex polyhedral domain. We analyze two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right hand side data f(x,t)∈L∞(0,T;H˙q(Ω))f(x,t)\in L^\infty(0,T;\dot H^q(\Omega)), −1<q≀1-1< q \le 1, for both semidiscrete schemes. For lumped mass method, the optimal L2(Ω)L^2(\Omega)-norm error estimate requires symmetric meshes. Finally, numerical experiments for one- and two-dimensional examples are presented to verify our theoretical results.Comment: 21 pages, 4 figure

    The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    Get PDF
    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one and two-dimension problems confirm the convergence rates of the theoretical results.Comment: 22 pages, 4 figure

    Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit

    Full text link
    We consider Implicit-Explicit (IMEX) Runge-Kutta (R-K) schemes for hyperbolic systems with stiff relaxation in the so-called diffusion limit. In such regime the system relaxes towards a convection-diffusion equation. The first objective of the paper is to show that traditional partitioned IMEX R-K schemes will relax to an explicit scheme for the limit equation with no need of modification of the original system. Of course the explicit scheme obtained in the limit suffers from the classical parabolic stability restriction on the time step. The main goal of the paper is to present an approach, based on IMEX R-K schemes, that in the diffusion limit relaxes to an IMEX R-K scheme for the convection-diffusion equation, in which the diffusion is treated implicitly. This is achieved by an original reformulation of the problem, and subsequent application of IMEX R-K schemes to it. An analysis on such schemes to the reformulated problem shows that the schemes reduce to IMEX R-K schemes for the limit equation, under the same conditions derived for hyperbolic relaxation. Several numerical examples including neutron transport equations confirm the theoretical analysis
    • 

    corecore