51,197 research outputs found

    Statistical Analysis of Bus Networks in India

    Full text link
    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.Comment: Submitted to PLOS ON

    The Network Analysis of Urban Streets: A Primal Approach

    Full text link
    The network metaphor in the analysis of urban and territorial cases has a long tradition especially in transportation/land-use planning and economic geography. More recently, urban design has brought its contribution by means of the "space syntax" methodology. All these approaches, though under different terms like accessibility, proximity, integration,connectivity, cost or effort, focus on the idea that some places (or streets) are more important than others because they are more central. The study of centrality in complex systems,however, originated in other scientific areas, namely in structural sociology, well before its use in urban studies; moreover, as a structural property of the system, centrality has never been extensively investigated metrically in geographic networks as it has been topologically in a wide range of other relational networks like social, biological or technological. After two previous works on some structural properties of the dual and primal graph representations of urban street networks (Porta et al. cond-mat/0411241; Crucitti et al. physics/0504163), in this paper we provide an in-depth investigation of centrality in the primal approach as compared to the dual one, with a special focus on potentials for urban design.Comment: 19 page, 4 figures. Paper related to the paper "The Network Analysis of Urban Streets: A Dual Approach" cond-mat/041124

    Network effects and total economic impact in transport appraisal

    No full text
    It is claimed that transport infrastructure projects have network effects which are not taken into account in the appraisal of these projects. This paper reviews the concept of network effects, relates this to transport appraisal practice, and links to the concept of ‘total economic impact’. The limitations of transport modelling and appraisal in estimating total economic impact are reviewed. Good quality appraisals should be capable of picking up relevant network effects in the transport market, but the state of the art remains limited on the linkages between transport and the wider economy

    Empirical analysis of the ship-transport network of China

    Full text link
    Structural properties of the ship-transport network of China (STNC) are studied in the light of recent investigations of complex networks. STNC is composed of a set of routes and ports located along the sea or river. Network properties including the degree distribution, degree correlations, clustering, shortest path length, centrality and betweenness are studied in different definition of network topology. It is found that geographical constraint plays an important role in the network topology of STNC. We also study the traffic flow of STNC based on the weighted network representation, and demonstrate the weight distribution can be described by power law or exponential function depending on the assumed definition of network topology. Other features related to STNC are also investigated.Comment: 20 pages, 7 figures, 1 tabl

    Impact of network structure on the capacity of wireless multihop ad hoc communication

    Full text link
    As a representative of a complex technological system, so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.Comment: 30 pages, to be published in Physica

    Internet routing paths stability model and relation to forwarding paths

    Get PDF
    Analysis of real datasets to characterize the local stability properties of the Internet routing paths suggests that extending the route selection criteria to account for such property would not increase the routing path length. Nevertheless, even if selecting a more stable routing path could be considered as valuable from a routing perspective, it does not necessarily imply that the associated forwarding path would be more stable. Hence, if the dynamics of the Internet routing and forwarding system show different properties, then one can not straightforwardly derive the one from the other. If this assumption is verified, then the relationship between the stability of the forwarding path (followed by the traffic) and the corresponding routing path as selected by the path-vector routing algorithm requires further characterization. For this purpose, we locally relate, i.e., at the router level, the stability properties of routing path with the corresponding forwarding path. The proposed stability model and measurement results verify this assumption and show that, although the main cause of instability results from the forwarding plane, a second order effect relates forwarding and routing path instability events. This observation provides the first indication that differential stability can safely be taken into account as part of the route selection process

    Critical Cooperation Range to Improve Spatial Network Robustness

    Full text link
    A robust worldwide air-transportation network (WAN) is one that minimizes the number of stranded passengers under a sequence of airport closures. Building on top of this realistic example, here we address how spatial network robustness can profit from cooperation between local actors. We swap a series of links within a certain distance, a cooperation range, while following typical constraints of spatially embedded networks. We find that the network robustness is only improved above a critical cooperation range. Such improvement can be described in the framework of a continuum transition, where the critical exponents depend on the spatial correlation of connected nodes. For the WAN we show that, except for Australia, all continental networks fall into the same universality class. Practical implications of this result are also discussed

    Optimal Traffic Networks

    Full text link
    Inspired by studies on the airports' network and the physical Internet, we propose a general model of weighted networks via an optimization principle. The topology of the optimal network turns out to be a spanning tree that minimizes a combination of topological and metric quantities. It is characterized by a strongly heterogeneous traffic, non-trivial correlations between distance and traffic and a broadly distributed centrality. A clear spatial hierarchical organization, with local hubs distributing traffic in smaller regions, emerges as a result of the optimization. Varying the parameters of the cost function, different classes of trees are recovered, including in particular the minimum spanning tree and the shortest path tree. These results suggest that a variational approach represents an alternative and possibly very meaningful path to the study of the structure of complex weighted networks.Comment: 4 pages, 4 figures, final revised versio
    corecore