396 research outputs found

    On the size of the inverse neighborhoods for one-dimensional reversible cellular automata

    Get PDF
    AbstractIn this paper we investigate the possible neighborhood size of the inverse automaton of some types of one-dimensional reversible cellular automata. Considering only the case when the local function is a size two map, we give a quadratic upper bound for the neighborhood size of the inverse automaton. We show that this bound can be lowered in some particular cases, and give an algorithm for computing these better bounds

    Post-surjectivity and balancedness of cellular automata over groups

    Full text link
    We discuss cellular automata over arbitrary finitely generated groups. We call a cellular automaton post-surjective if for any pair of asymptotic configurations, every pre-image of one is asymptotic to a pre-image of the other. The well known dual concept is pre-injectivity: a cellular automaton is pre-injective if distinct asymptotic configurations have distinct images. We prove that pre-injective, post-surjective cellular automata are reversible. Moreover, on sofic groups, post-surjectivity alone implies reversibility. We also prove that reversible cellular automata over arbitrary groups are balanced, that is, they preserve the uniform measure on the configuration space.Comment: 16 pages, 3 figures, LaTeX "dmtcs-episciences" document class. Final version for Discrete Mathematics and Theoretical Computer Science. Prepared according to the editor's request

    Index theory of one dimensional quantum walks and cellular automata

    Full text link
    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems - namely quantum walks and cellular automata - we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S_1, S_2 can be pieced together, in the sense that there is a system S which locally acts like S_1 in one region and like S_2 in some other region, if and only if S_1 and S_2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S_1 into S_2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map S -> ind S is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.Comment: 38 pages. v2: added examples, terminology clarifie

    Procedures for calculating reversible one-dimensional cellular automata

    Get PDF
    We describe two algorithms for calculating reversible one-dimensional cellular automata of neighborhood size 2. We explain how this kind of automaton represents all the other cases. Using two basic properties of reversible automata such as uniform multiplicity of ancestors and Welch indices, these algorithms only require matrix products and transitive closures of binary relations to classify all the possible reversible automata of neighborhood size 2. We expose the features, advantages and differences with other well-known methods. Finally, we present results for reversible automata from three to six states and neighborhood size 2. © 2005 Elsevier B.V. All rights reserved

    The inverse behavior of a reversible one-dimensional cellular automaton obtained by a single welch diagram

    Get PDF
    Reversible cellular automata are discrete dynamical systems based on local interactions which are able to produce an invertible global behavior. Reversible automata have been carefully analyzed by means of graph and matrix tools, in particular the extensions of the ancestors in these systems have a complete representation by Welch diagrams. This paper illustrates how the whole information of a reversible one-dimensional cellular automaton is conserved at both sides of the ancestors for sequences with an adequate length. We give this result implementing a procedure to obtain the inverse behavior by means of calculating and studying a single Welch diagram corresponding with the extensions of only one side of the ancestors. This work is a continuation of our study about reversible automata both in the local and global sense. An illustrative example is also presented

    Spectral properties of reversible one-dimensional cellular automata

    Get PDF
    Reversible cellular automata are invertible dynamical systems characterized by discreteness, determinism and local interaction. This article studies the local behavior of reversible one-dimensional cellular automata by means of the spectral properties of their connectivity matrices. We use the transformation of every one-dimensional cellular automaton to another of neighborhood size 2 to generalize the results exposed in this paper. In particular we prove that the connectivity matrices have a single positive eigenvalue equal to 1; based on this result we also prove the idempotent behavior of these matrices. The significance of this property lies in the implementation of a matrix technique for detecting whether a one-dimensional cellular automaton is reversible or not. In particular, we present a procedure using the eigenvectors of these matrices to find the inverse rule of a given reversible one-dimensional cellular automaton. Finally illustrative examples are provided
    corecore