218 research outputs found

    Multiarray Signal Processing: Tensor decomposition meets compressed sensing

    Get PDF
    We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce a computationally feasible variant of Kruskal's uniqueness condition, where the coherence appears as a proxy for k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to simultaneous localization and extraction of radiating sources, in an entirely deterministic manner.Comment: 10 pages, 1 figur

    Tangent lines, inflections, and vertices of closed curves

    Full text link
    We show that every smooth closed curve C immersed in Euclidean 3-space satisfies the sharp inequality 2(P+I)+V >5 which relates the numbers P of pairs of parallel tangent lines, I of inflections (or points of vanishing curvature), and V of vertices (or points of vanishing torsion) of C. We also show that 2(P'+I)+V >3, where P' is the number of pairs of concordant parallel tangent lines. The proofs, which employ curve shortening flow with surgery, are based on corresponding inequalities for the numbers of double points, singularities, and inflections of closed curves in the real projective plane and the sphere which intersect every closed geodesic. These findings extend some classical results in curve theory including works of Moebius, Fenchel, and Segre, which is also known as Arnold's "tennis ball theorem".Comment: Minor revisions; To appear in Duke Math.

    Convergence analysis of Riemannian Gauss-Newton methods and its connection with the geometric condition number

    Full text link
    We obtain estimates of the multiplicative constants appearing in local convergence results of the Riemannian Gauss-Newton method for least squares problems on manifolds and relate them to the geometric condition number of [P. B\"urgisser and F. Cucker, Condition: The Geometry of Numerical Algorithms, 2013]

    Tangential projections and secant defective varieties

    Full text link
    Going one step further in Zak's classification of Scorza varieties with secant defect equal to one, we characterize the Veronese embedding of n\P^n given by the complete linear system of quadrics and its smooth projections from a point as the only smooth irreducible complex and non-degenerate projective subvarieties of N\P^N that can be projected isomorphically into 2n\P^{2n} when N(n+22)2N\geq\binom{n+2}{2}-2.Comment: To appear in Bulletin of the London Mathematical Societ

    Families of n-gonal curves with maximal variation of moduli

    Get PDF
    We study families of n-gonal curves with maximal variation of moduli, which have a rational section. Certain numerical results on the degree of the modular map are obtained for such families of hyperelliptic and trigonal curves. In the last case we use the description of the relative Picard group of the universal family of trigonal curves.Comment: 16 pages. Some modifications on the third section. References adde

    Obstructions to embeddability into hyperquadrics and explicit examples

    Full text link
    We give series of explicit examples of Levi-nondegenerate real-analytic hypersurfaces in complex spaces that are not transversally holomorphically embeddable into hyperquadrics of any dimension. For this, we construct invariants attached to a given hypersurface that serve as obstructions to embeddability. We further study the embeddability problem for real-analytic submanifolds of higher codimension and answer a question by Forstneri\v{c}.Comment: Revised version, appendix and references adde

    On the average condition number of tensor rank decompositions

    Full text link
    We compute the expected value of powers of the geometric condition number of random tensor rank decompositions. It is shown in particular that the expected value of the condition number of n1×n2×2n_1\times n_2 \times 2 tensors with a random rank-rr decomposition, given by factor matrices with independent and identically distributed standard normal entries, is infinite. This entails that it is expected and probable that such a rank-rr decomposition is sensitive to perturbations of the tensor. Moreover, it provides concrete further evidence that tensor decomposition can be a challenging problem, also from the numerical point of view. On the other hand, we provide strong theoretical and empirical evidence that tensors of size n1 × n2 × n3n_1~\times~n_2~\times~n_3 with all n1,n2,n33n_1,n_2,n_3 \ge 3 have a finite average condition number. This suggests there exists a gap in the expected sensitivity of tensors between those of format n1×n2×2n_1\times n_2 \times 2 and other order-3 tensors. For establishing these results, we show that a natural weighted distance from a tensor rank decomposition to the locus of ill-posed decompositions with an infinite geometric condition number is bounded from below by the inverse of this condition number. That is, we prove one inequality towards a so-called condition number theorem for the tensor rank decomposition
    corecore