1,953 research outputs found

    GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    Full text link
    We report on the growth and optical characterisation of droplet GaAs quantum dots with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the quantum dots obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single quantum dots, at near-infrared wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are ideal candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.Comment: 1 pages, 3 figure

    High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy

    Full text link
    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route towards quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared to previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.Comment: 14 pages, 3 figure

    Synthesis and systematic optical investigation of selective area droplet epitaxy of InAs/InP quantum dots assisted by block copolymer lithography

    Get PDF
    We report on the systematic investigation of the optical properties of a selectively grown quantum dot gain material assisted by block-copolymer lithography for potential applications in active optical devices operating in the wavelength range around 1.55 um and above. We investigated a new type of diblock copolymer PS-b-PDMS (polystyrene-block-polydimethylsiloxane) for the fabrication of silicon oxycarbide hard mask for selective area epitaxy of InAs/InP quantum dots. An array of InAs/InP quantum dots was selectively grown via droplet epitaxy. Our detailed investigation of the quantum dot carrier dynamics in the 10-300 K temperature range indicates the presence of a density of states located within the InP bandgap in the vicinity of quantum dots. Those defects have a substantial impact on the optical properties of quantum dots.Comment: 11 pages, 5 figures, 1 tabl

    Quantum Dots Prepared by Droplet Epitaxial Method

    Get PDF
    In this work, we are dealing with the droplet epitaxially prepared quantum dots. This technology is not only an alternative way of the strain induced technique to prepare quantum dots, but it allows us to make various shaped nano structures from various material. The present paper deals not only with the so called conventional shaped quantum dot but also with the ring shaped dot, with the inverted dot and with dot molecules as well. Their thechnology, opto-electronical and the structural properties are also discussed

    Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion

    Get PDF
    Making use of droplet epitaxy, we systematically controlled the height of self-assembled GaAs quantum dots by more than one order of magnitude. The photoluminescence spectra of single quantum dots revealed the strong dependence of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm showed broad spectral peaks with an average width as large as ~5 meV, but shallow dots with a height of ~2 nm showed resolution-limited spectral lines (<120 micro eV). The measured height dependence of the linewidths is in good agreement with Stark coefficients calculated for the experimental shape variation. We attribute the microscopic source of fluctuating electric fields to the random motion of surface charges at the vacuum-semiconductor interface. Our results offer guidelines for creating frequency-locked photon sources, which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description

    Droplet Epitaxy as a Tool for the QD-Based Circuit Realization

    Get PDF
    The chapter describes a novel technology, called droplet epitaxy, in the view point of quantum-circuit realization. This technology is useful when quantum dots are to be produced, of different shape and size in various densities. There are self-assembling methods to achieve spatial ordering or spatial positioning. Out of some of the possible applications as an example, the register and cellular automata circuit will be described

    Synthesis of nanostructures in nanowires using sequential catalyst reactions.

    Get PDF
    Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.Supported by the National Science Foundation under Grants No. DMR-0606395 and 0907483 (YCC), ERC Grant 279342: InSituNANO (FP, SH), the National Science Council of Taiwan under Grant No. NSC-101-2112-M-009-021-MY3 (YCC), the Center for Interdisciplinary Science under the MOE-ATU project for NCTU (YCC) and the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886 (DZ and EAS).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmat435

    Surface X-Ray Diffraction Results on the IIIā€“V Droplet Heteroepitaxy Growth Process for Quantum Dots: Recent Understanding and Open Questions

    Get PDF
    In recent years, epitaxial growth of self-assembled quantum dots has offered a way to incorporate new properties into existing solid state devices. Although the droplet heteroepitaxy method is relatively complex, it is quite relaxed with respect to the material combinations that can be used. This offers great flexibility in the systems that can be achieved. In this paper we review the structure and composition of a number of quantum dot systems grown by the droplet heteroepitaxy method, emphasizing the insights that these experiments provide with respect to the growth process. Detailed structural and composition information has been obtained using surface X-ray diffraction analyzed by the COBRA phase retrieval method. A number of interesting phenomena have been observed: penetration of the dots into the substrate (ā€œnano-drillingā€) is often encountered; interdiffusion and intermixing already start when the group III droplets are deposited, and structure and composition may be very different from the one initially intended
    • ā€¦
    corecore