4,818 research outputs found

    On optimizing over lift-and-project closures

    Full text link
    The lift-and-project closure is the relaxation obtained by computing all lift-and-project cuts from the initial formulation of a mixed integer linear program or equivalently by computing all mixed integer Gomory cuts read from all tableau's corresponding to feasible and infeasible bases. In this paper, we present an algorithm for approximating the value of the lift-and-project closure. The originality of our method is that it is based on a very simple cut generation linear programming problem which is obtained from the original linear relaxation by simply modifying the bounds on the variables and constraints. This separation LP can also be seen as the dual of the cut generation LP used in disjunctive programming procedures with a particular normalization. We study some properties of this separation LP in particular relating it to the equivalence between lift-and-project cuts and Gomory cuts shown by Balas and Perregaard. Finally, we present some computational experiments and comparisons with recent related works

    Facets of a mixed-integer bilinear covering set with bounds on variables

    Full text link
    We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation with a few extra variables and much smaller number of constraints is presented. We also derive a linear time separation algorithm for finding the facet defining inequalities of this convex hull. We study the effectiveness of the new inequalities and the extended formulation using some examples

    On Minimal Valid Inequalities for Mixed Integer Conic Programs

    Full text link
    We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull. We study the properties of K-minimal inequalities by establishing algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically defined class of K- sublinear inequalities. We establish a close connection between K-sublinear inequalities and the support functions of sets with a particular structure. This connection results in practical ways of showing that a given inequality is K-sublinear and K-minimal. Our framework generalizes some of the results from the mixed integer linear case. It is well known that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily recovered by our analysis. Whenever possible we highlight the connections to the existing literature. However, our study unveils that such a cut generating function view treating the data associated with each individual variable independently is not possible in the case of general cones other than nonnegative orthant, even when the cone involved is the Lorentz cone

    An extension of disjunctive programming and its impact for compact tree formulations

    Full text link
    In the 1970's, Balas introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) for a well-known spanning tree approximation of Steiner trees, for Gomory-Hu trees, and, as a consequence, of the minimum TT-cut problem (but not for the associated TT-cut polyhedron). Recently, Kaibel and Loos (2010) introduced a more involved framework called {\em polyhedral branching systems} to derive extended formulations. The most parts of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework by an interesting algorithmic aspect.Comment: 17 page

    An extension of disjunctive programming and its impact for compact tree formulations

    Get PDF
    In the 1970’s, Balas [2, 4] introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result by extending the polyhedral structure of the variables coupling the polyhedra taken in the union. Using this generalized concept, we derive polynomial size linear programming formulations (compact formulations) of a well- known spanning tree approximation of Steiner trees and flow equivalent trees for node- as well as edge- capacitated undirected networks. We also present a compact formulation for Gomory-Hu trees, and, as a consequence, of the minimum T-cut problem (but not for the associated T-cut polyhedron). Recently, Kaibel and Loos [10] introduced a more involved framework called polyhedral branching systems to derive extended formulations. The most of our model can be expressed in terms of their framework. The value of our model can be seen in the fact that it completes their framework with an interesting algorithmic aspect.disjunctive programming, compact formulation, flow-equivalent trees, Gomory-Hu trees

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics
    • …
    corecore