214,636 research outputs found

    On the quantum chromatic number of a graph

    Get PDF
    We investigate the notion of quantum chromatic number of a graph, which is the minimal number of colours necessary in a protocol in which two separated provers can convince an interrogator with certainty that they have a colouring of the graph. After discussing this notion from first principles, we go on to establish relations with the clique number and orthogonal representations of the graph. We also prove several general facts about this graph parameter and find large separations between the clique number and the quantum chromatic number by looking at random graphs. Finally, we show that there can be no separation between classical and quantum chromatic number if the latter is 2, nor if it is 3 in a restricted quantum model; on the other hand, we exhibit a graph on 18 vertices and 44 edges with chromatic number 5 and quantum chromatic number 4.Comment: 7 pages, 1 eps figure; revtex4. v2 has some new references; v3 furthe small improvement

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page

    Lower Bounds for Symbolic Computation on Graphs: Strongly Connected Components, Liveness, Safety, and Diameter

    Full text link
    A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and co-liveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D)O(D) symbolic operations, where DD is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires O~(nD)\tilde{O}(n \sqrt{D}) symbolic steps to achieve a (1+ϵ)(1+\epsilon)-approximation for any constant ϵ>0\epsilon > 0. This compares to O(n⋅D)O(n \cdot D) symbolic steps for the (naive) exact algorithm and O(D)O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of Gentilini et al., showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components

    Scalable Breadth-First Search on a GPU Cluster

    Full text link
    On a GPU cluster, the ratio of high computing power to communication bandwidth makes scaling breadth-first search (BFS) on a scale-free graph extremely challenging. By separating high and low out-degree vertices, we present an implementation with scalable computation and a model for scalable communication for BFS and direction-optimized BFS. Our communication model uses global reduction for high-degree vertices, and point-to-point transmission for low-degree vertices. Leveraging the characteristics of degree separation, we reduce the graph size to one third of the conventional edge list representation. With several other optimizations, we observe linear weak scaling as we increase the number of GPUs, and achieve 259.8 GTEPS on a scale-33 Graph500 RMAT graph with 124 GPUs on the latest CORAL early access system.Comment: 12 pages, 13 figures. To appear at IPDPS 201

    Diameter-separation of chessboard graphs

    Get PDF
    We define the queens (resp., rooks) diameter-separation number to be the minimum number of pawns for which some placement of those pawns on an n×n board produces a board with a queens graph (resp., rooks graph) with a desired diameter d. We determine these numbers for some small values of d
    • …
    corecore