24 research outputs found

    Roman Domination in Complementary Prism Graphs

    Get PDF
    A Roman domination function on a complementary prism graph GGc is a function f : V [ V c ! {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number R(GGc) of a graph G = (V,E) is the minimum of Px2V [V c f(x) over such functions, where the complementary prism GGc of G is graph obtained from disjoint union of G and its complement Gc by adding edges of a perfect matching between corresponding vertices of G and Gc. In this paper, we have investigated few properties of R(GGc) and its relation with other parameters are obtaine

    A Semi-Total Domination Number of a Graph

    Get PDF
    This thesis work on the two parameters that is very important domination parameters, one parameter is known as domination number and other parameter is called as total domination number. S is defined as a set of vertices in a graph G. We characterize a set S of vertices in a graph G with no segregated vertices to be a semitotal overwhelming arrangement of G in the event that it is a ruling arrangement of G and furthermore every vertex in S is inside separation 2 of another vertex of S. The semitotal domination number, indicated by is the base cardinality of a semitotal ruling arrangement of G. We demonstrate that on the off chance that G is an associated graph on n ? 4 vertices, at that point and we describe the trees and diagrams of least degree 2 arriving at this bound

    International Journal of Mathematical Combinatorics, Vol.6A

    Get PDF
    The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences

    A new approach on locally checkable problems

    Full text link
    By providing a new framework, we extend previous results on locally checkable problems in bounded treewidth graphs. As a consequence, we show how to solve, in polynomial time for bounded treewidth graphs, double Roman domination and Grundy domination, among other problems for which no such algorithm was previously known. Moreover, by proving that fixed powers of bounded degree and bounded treewidth graphs are also bounded degree and bounded treewidth graphs, we can enlarge the family of problems that can be solved in polynomial time for these graph classes, including distance coloring problems and distance domination problems (for bounded distances)

    Integrity of Generalized Transformation Graphs

    Get PDF
    The values of vulnerability helps the network designers to construct such a communication network which remains stable after some of its nodes or communication links are damaged. The transformation graphs considered in this paper are taken as model of the network system and it reveals that, how network can be made more stable and strong. For this purpose the new nodes are inserted in the network. This construction of new network is done by using the definition of generalized transformation graphs of a graphs. Integrity is one of the best vulnerability parameter. In this paper, we investigate the integrity of generalized transformation graphs and their complements. Also, we find integrity of semitotal point graph of combinations of basic graphs. Finally, we characterize few graphs having equal integrity values as that of generalized transformation graphs of same structured graphs

    Distances and Domination in Graphs

    Get PDF
    This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present
    corecore