26 research outputs found

    Carrier recovery methods for a dual-mode modem: A design approach

    Get PDF
    A dual mode model with selectable QPSK or 16-QASK modulation schemes is discussed. The theoretical reasoning as well as the practical trade-offs made during the development of a modem are presented, with attention given to the carrier recovery method used for coherent demodulation. Particular attention is given to carrier recovery methods that can provide little degradation due to phase error for both QPSK and 16-QASK, while being insensitive to the amplitude characteristic of a 16-QASK modulation scheme. A computer analysis of the degradation is symbol error rate (SER) for QPSK and 16-QASK due to phase error is prresented. Results find that an energy increase of roughly 4 dB is needed to maintain a SER of 1X10(-5) for QPSK with 20 deg of phase error and 16-QASK with 7 deg phase error

    Phase Jitter in MPSK Carrier Tracking Loops: Analytical, Simulation and Laboratory Results

    Get PDF
    A performance characteristic of M-ary phase shift keying (MPSK) receivers is the variance of the phase error between the received and recovered signal carriers. For binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) loops utilizing integrate and dump filters and operating in the linear region, closed-form solutions for this variance exist [1], [2]. In this paper the variance is found by numerical methods for M \u3e 4. For verification and to investigate operation in the nonlinear region, computer simulation and hardware modeling were used [3]

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    Phase jitter in MPSK carrier tracking loops: analytical, simulation and laboratory results

    Full text link

    An Analysis of Carrier Phase Jitter in an M-PSK Receiver Utilizing MAP Estimation

    Get PDF
    The use of 8 and 16 PSK TCM to support satellite communications in an effort to achieve more bandwidth efficiency in a power-limited channel has been proposed. The authors address the problem of carrier phase jitter in an M-PSK receiver utilizing the high SNR approximation to the maximum a posteriori estimation of carrier phase. In particular, numerical solutions to 8 and 16 PSK self-noise and the amplitude suppression factor in the loop are presented. The effect of changing SNR on the loop noise bandwidth is also discussed. This data is then used to compute variance of phase error as a function of SNR. Simulation data is used to verify these calculations. The results show that there is a threshold in the variance of phase error verse SNR curves that is a strong function of SNR and a weak function of loop bandwidth. The M-PSK variance thresholds occur at SNRs in the range of practical interest for the use of 8 and 16-PSK TCM. This suggests that phase error variance is an important consideration in the design of these system

    Signal constellation and carrier recovery technique for voice-band modems

    Get PDF

    An analysis of carrier phase jitter in an MPSK receiver utilizing map estimation

    Get PDF
    The use of 8 and 16 PSK TCM to support satellite communications in an effort to achieve more bandwidth efficiency in a power-limited channel has been proposed. This project addresses the problem of carrier phase jitter in an M-PSK receiver utilizing the high SNR approximation to the maximum aposteriori estimation of carrier phase. In particular, numerical solutions to the 8 and 16 PSK self-noise and phase detector gain in the carrier tracking loop are presented. The effect of changing SNR on the loop noise bandwidth is also discussed. These data are then used to compute variance of phase error as a function of SNR. Simulation and hardware data are used to verify these calculations. The results show that there is a threshold in the variance of phase error versus SNR curves that is a strong function of SNR and a weak function of loop bandwidth. The M-PSK variance thresholds occur at SNR's in the range of practical interest for the use of 8 and 16-PSK TCM. This suggests that phase error variance is an important consideration in the design of these systems

    Shuttle Ku-band signal design study

    Get PDF
    Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed

    Publications of the Jet Propulsion Laboratory, January through December 1974

    Get PDF
    Formalized technical reporting is described and indexed, which resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. The five classes of publications included are technical reports, technical memorandums, articles from the bimonthly Deep Space Network Progress Report, special publications, and articles published in the open literature. The publications are indexed by author, subject, and publication type and number

    Multiple beam antenna/switch system study

    Get PDF
    In the study of the Multiple Beam Antenna/Switch for the space to ground link (SGL) uplink and downlink services, several issues related to system engineering, antenna, transmit/receive, and switch systems were addressed and the results are provided. Bandwidth allocation at Ku band is inadequate to serve the data rate requirements for the forward and return services. Rain and depolarization effects at EHF, especially at Ka band, pose a significant threat to the link availabilities at heavy rain areas. Hardware induced effects such as the nonlinear characteristics of the power amplifier may necessitate the use of linearizers and limiters. It is also important to identify the components that are susceptible to the space radiation effects and shield or redesign them with rad-hard technologies for meeting the requirements of the space environment
    corecore