32 research outputs found

    Resource requirements and speed versus geometry of unconditionally secure physical key exchanges

    Get PDF
    The imperative need for unconditional secure key exchange is expounded by the increasing connectivity of networks and by the increasing number and level of sophistication of cyberattacks. Two concepts that are information theoretically secure are quantum key distribution (QKD) and Kirchoff-law-Johnson-noise (KLJN). However, these concepts require a dedicated connection between hosts in peer-to-peer (P2P) networks which can be impractical and or cost prohibitive. A practical and cost effective method is to have each host share their respective cable(s) with other hosts such that two remote hosts can realize a secure key exchange without the need of an additional cable or key exchanger. In this article we analyze the cost complexities of cable, key exchangers, and time required in the star network. We mentioned the reliability of the star network and compare it with other network geometries. We also conceived a protocol and equation for the number of secure bit exchange periods needed in a star network. We then outline other network geometries and trade-off possibilities that seem interesting to explore.Comment: 13 pages, 7 figures, MDPI Entrop

    Enhanced secure key exchange systems based on the Johnson-noise scheme

    Get PDF
    We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme and a new transient protocol for practically-perfect security. While these practical improvements offer progressively enhanced security and/or speed for the non-ideal conditions, the fundamental physical laws providing the security remain the same. In the "intelligent" KLJN (iKLJN) scheme, Alice and Bob utilize the fact that they exactly know not only their own resistor value but also the stochastic time function of their own noise, which they generate before feeding it into the loop. In the "multiple" KLJN (MKLJN) system, Alice and Bob have publicly known identical sets of different resistors with a proper, publicly known truth table about the bit-interpretation of their combination. In the "keyed" KLJN (KKLJN) system, by using secure communication with a formerly shared key, Alice and Bob share a proper time-dependent truth table for the bit-interpretation of the resistor situation for each secure bit exchange step during generating the next key. The remaining four KLJN schemes are the combinations of the above protocols to synergically enhance the security properties. These are: the "intelligent-multiple" (iMKLJN), the "intelligent-keyed" (iKKLJN), the "keyed-multiple" (KMKLJN) and the "intelligent-keyed-multiple" (iKMKLJN) KLJN key exchange systems. Finally, we introduce a new transient-protocol offering practically-perfect security without privacy amplification, which is not needed at practical applications but it is shown for the sake of ongoing discussions.Comment: This version is accepted for publicatio

    On KLJN-based secure key distribution in vehicular communication networks

    Full text link
    In a former paper [Fluct. Noise Lett., 13 (2014) 1450020] we introduced a vehicular communication system with unconditionally secure key exchange based on the Kirchhoff-Law-Johnson-Noise (KLJN) key distribution scheme. In this paper, we address the secure KLJN key donation to vehicles. This KLJN key donation solution is performed lane-by-lane by using roadside key provider equipment embedded in the pavement. A method to compute the lifetime of the KLJN key is also given. This key lifetime depends on the car density and gives an upper limit of the lifetime of the KLJN key for vehicular communication networks.Comment: Accepted for publicatio

    Current Injection Attack against the KLJN Secure Key Exchange

    Full text link
    The Kirchhoff-law-Johnson-noise (KLJN) scheme is a statistical/physical secure key exchange system based on the laws of classical statistical physics to provide unconditional security. We used the LTSPICE industrial cable and circuit simulator to emulate one of the major active (invasive) attacks, the current injection attack, against the ideal and a practical KLJN system, respectively. We show that two security enhancement techniques, namely, the instantaneous voltage/current comparison method, and a simple privacy amplification scheme, independently and effectively eliminate the information leak and successfully preserve the system's unconditional security
    corecore