4 research outputs found

    Secure Wireless Communications Based on Compressive Sensing: A Survey

    Get PDF
    IEEE Compressive sensing (CS) has become a popular signal processing technique and has extensive applications in numerous fields such as wireless communications, image processing, magnetic resonance imaging, remote sensing imaging, and anology to information conversion, since it can realize simultaneous sampling and compression. In the information security field, secure CS has received much attention due to the fact that CS can be regarded as a cryptosystem to attain simultaneous sampling, compression and encryption when maintaining the secret measurement matrix. Considering that there are increasing works focusing on secure wireless communications based on CS in recent years, we produce a detailed review for the state-of-the-art in this paper. To be specific, the survey proceeds with two phases. The first phase reviews the security aspects of CS according to different types of random measurement matrices such as Gaussian matrix, circulant matrix, and other special random matrices, which establishes theoretical foundations for applications in secure wireless communications. The second phase reviews the applications of secure CS depending on communication scenarios such as wireless wiretap channel, wireless sensor network, internet of things, crowdsensing, smart grid, and wireless body area networks. Finally, some concluding remarks are given

    On the security of compressed encryption with partial unitary sensing matrices embedding a secret keystream

    No full text
    Abstract The principle of compressed sensing (CS) can be applied in a cryptosystem by providing the notion of security. In this paper, we study the computational security of a CS-based cryptosystem that encrypts a plaintext with a partial unitary sensing matrix embedding a secret keystream. The keystream is obtained by a keystream generator of stream ciphers, where the initial seed becomes the secret key of the CS-based cryptosystem. For security analysis, the total variation distance, bounded by the relative entropy and the Hellinger distance, is examined as a security measure for the indistinguishability. By developing upper bounds on the distance measures, we show that the CS-based cryptosystem can be computationally secure in terms of the indistinguishability, as long as the keystream length for each encryption is sufficiently large with low compression and sparsity ratios. In addition, we consider a potential chosen plaintext attack (CPA) from an adversary, which attempts to recover the key of the CS-based cryptosystem. Associated with the key recovery attack, we show that the computational security of our CS-based cryptosystem is brought by the mathematical intractability of a constrained integer least-squares (ILS) problem. For a sub-optimal, but feasible key recovery attack, we consider a successive approximate maximum-likelihood detection (SAMD) and investigate the performance by developing an upper bound on the success probability. Through theoretical and numerical analyses, we demonstrate that our CS-based cryptosystem can be secure against the key recovery attack through the SAMD
    corecore