16,869 research outputs found

    A Generalization of the Eulerian Numbers

    Full text link
    In the present paper we generalize the Eulerian numbers (also of the second and third orders). The generalization is connected with an autonomous first-order differential equation, solutions of which are used to obtain integral representations of some numbers, including the Bernoulli numbers.Comment: 13 pages, preprin

    A Moving Frame Algorithm for High Mach Number Hydrodynamics

    Full text link
    We present a new approach to Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in astrophysical hydrodynamic simulations. The Eulerian fluid conservation equations are solved in an adaptive frame moving with the fluid where Mach numbers are minimized. The moving frame approach uses a velocity decomposition technique to define local kinetic variables while storing the bulk kinetic components in a smoothed background velocity field that is associated with the grid velocity. Gravitationally induced accelerations are added to the grid, thereby minimizing the spurious heating problem encountered in cold gas flows. Separately tracking local and bulk flow components allows thermodynamic variables to be accurately calculated in both subsonic and supersonic regions. A main feature of the algorithm, that is not possible in previous Eulerian implementations, is the ability to resolve shocks and prevent spurious heating where both the preshock and postshock Mach numbers are high. The hybrid algorithm combines the high resolution shock capturing ability of the second-order accurate Eulerian TVD scheme with a low-diffusion Lagrangian advection scheme. We have implemented a cosmological code where the hydrodynamic evolution of the baryons is captured using the moving frame algorithm while the gravitational evolution of the collisionless dark matter is tracked using a particle-mesh N-body algorithm. The MACH code is highly suited for simulating the evolution of the IGM where accurate thermodynamic evolution is needed for studies of the Lyman alpha forest, the Sunyaev-Zeldovich effect, and the X-ray background. Hydrodynamic and cosmological tests are described and results presented. The current code is fast, memory-friendly, and parallelized for shared-memory machines.Comment: 19 pages, 5 figure

    A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    Full text link
    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200
    • …
    corecore