244 research outputs found

    Analysis of BJT Colpitts Oscillators - Empirical and Mathematical Methods for Predicting Behavior

    Get PDF
    Oscillator circuits perform two fundamental roles in wireless communication –the local oscillator for frequency shifting and the voltage-controlled oscillator formodulation and detection. The Colpitts oscillator is a common topology used for theseapplications. Because the oscillator must function as a component of a larger system, theability to predict and control its output characteristics is necessary. Textbooks treating thecircuit often omit analysis of output voltage amplitude and output resistance and theliterature on the topic often focuses on gigahertz-frequency chip-based applications.Without extensive component and parasitics information, it is often difficult to makesimulation software predictions agree with experimental oscillator results.The oscillator studied in this thesis is the bipolar junction Colpitts oscillator in thecommon-base configuration and the analysis is primarily experimental. Thecharacteristics considered are output voltage amplitude, output resistance, andsinusoidal purity of the waveform. The contributions of each of the components of theoscillator to the output voltage waveform are investigated and methods to predict andcontrol amplitude are discussed. The relationships of the output resistance and waveformshape to the inductor are also studied. Two example Colpitts oscillators with differentdesign criteria are constructed for the benefit of the reader and to test the methodsidentified in the work

    DESIGN OF A GAAS DISTRIBUTED AMPLIFIER WITH LC TRAPS BASED BROADBAND LINEARIZATION

    Get PDF
    Increasing the linearity of power amplifiers has been an important area of research because its signal integrity influences the performance of the entire transreceiver system and there are strict regulatory requirements on them. Due to the nonlinear behaviour of power amplifiers, third order intermodulation products are generated close to the desired signals and cannot be removed by filters. Increasing linearity will help bring these distortion products closer to the noise floor. However, it is not an easy task to increase linearity without trading off output power. To maintain the same level of output power generated but with higher linearity, many techniques, each with its own pros and cons, have been implemented to linearize an amplifier. Techniques involving feedback are seriously limited in terms of modulation bandwidth whereas methods such as predistortion and feedforward are very difficult to implement. This project seeks to use a simple method of placing terminations directly to the distributed amplifier (DA), making it a device level linearization technique and can be used in addition to the other system level techniques mentioned earlier. To increase linearity over a broad bandwidth of 0.5 to 3.0 GHz, this work proposes using low impedance terminations (LC traps) at the envelope frequency to the input and output of several distributed amplifiers. This research is novel since this is the first time broadband improvement in linearity has been demonstrated using the LC trap method. Two design iterations were completed (first design iteration has four variants to test the output trap while the second design iteration has three variants to test the input trap). The low impedance terminations are implemented using inductor-capacitor networks that are external to the monolithic microwave integrated circuit (MMIC). Design and layout of the DAs were carried out using Agilent’s Advanced Design System (ADS). Results show that placing the traps at the output of the DA does not truly affect the linearity of the device at lower frequencies but provide an improvement of 1.6 dB and 3.4 dB to the third-order output intercept point (OIP3) at 2.5 GHz and 3.0 GHz, respectively. With traps at the input, measurement results at -5 dBm input power, viii 1.375 V base bias (61 mA total collector current) and 10 MHz two tone spacing show a broadband improvement throughout the band (0.5 GHz to 3.0 GHz) of 3.3 dB to 7.4 dB in OIP3. Furthermore, the OIP3 is increased to 19.2 dB above P1dB. Results show that the improvement in OIP3 comes without lowering gain, return loss or P1dB and without causing any stability problems

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    5-GHz SiGe HBT monolithic radio transceiver with tunable filtering

    Full text link

    Class D Audio Amplifier

    Get PDF
    This project consisted of the design, construction, and comparison testing of two implementations of analog pulse-width modulation Class D audio amplifiers. The main goal of the project was to maximize the efficiency of the amplifier designs while maintaining a high-power, low-noise output signal. PCB testing confirmed that the amplifiers met our goals of greater than 90% efficiency, less than 1% total harmonic distortion and greater than 50 W output power

    Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    Get PDF
    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion architecture. The most stringent problems are involved in the second-order distortion in mixers to which special attention has been given. The work introduces calibration techniques to overcome these problems. Some design considerations for front-end radio receivers are also given through a mixer-centric approach. The work summarizes the design of several downconversion mixers. Three of the implemented mixers are integrated as the downconversion stages of larger direct conversion receiver chips. One is realized together with the LNA as an RF front-end. Also, some stand-alone structures have been characterized. Two of the mixers that are integrated together with whole analog receivers include calibration structures to improve the second-order intermodulation rejection. A theoretical mismatch analysis of the second-order distortion in the mixers is also presented in this thesis. It gives a comprehensive illustration of the second-order distortion in mixers. It also gives the relationships between the dc-offsets and high IIP2. In addition, circuit and layout techniques to improve the LO-to-RF isolation are discussed. The presented work provides insight into how the mixer immunity against the second-order distortion can be improved. The implemented calibration structures show promising performance. On the basis of these results, several methods of detecting the distortion on-chip and the possibilities of integrating the automatic on-chip calibration procedures to produce a repeatable and well-predictable receiver IIP2 are presented.reviewe

    Monolithic Microwave Integrated Circuits for Wideband SAR System

    Get PDF

    Realization of a single-chip, SiGe:C-based power amplifier for multi-band WiMAX applications

    Get PDF
    A fully-integrated Multi-Band PA using 0.25 μm SiGe:C process with an output power of above 25 dBm is presented. The behaviour of the amplifier has been optimized for multi-band operation covering, 2.4 GHz, 3.6 GHz and 5.4 GHz (UWB-WiMAX) frequency bands for higher 1-dB compression point and efficiency. Multi-band operation is achieved using multi-stage topology. Parasitic components of active devices are also used as matching components, in turn decreasing the number of matching component. Measurement results of the PA provided the following performance parameters: 1-dB compression point of 20.5 dBm, gain value of 23 dB and efficiency value of %7 operation for the 2.4 GHz band; 1-dB compression point of 25.5 dBm, gain value of 31.5 dB and efficiency value of %17.5 for the 3.6 GHz band; 1-dB compression point of 22.4 dBm, gain value of 24.4 dB and efficiency value of %9.5 for the 5.4 GHz band. Measurement results show that using multi-stage topologies and implementing each parasitic as part of the matching network component has provided a wider-band operation with higher output power levels, above 25 dBm, with SiGe:C process

    Radio Electronics

    Get PDF
    • …
    corecore