157 research outputs found

    Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

    Full text link
    In this work, we present a concatenated repetition-polar coding scheme that is aimed at applications requiring highly unbalanced unequal bit-error protection, such as the Beam Interlock System of the Large Hadron Collider at CERN. Even though this concatenation scheme is simple, it reveals significant challenges that may be encountered when designing a concatenated scheme that uses a polar code as an inner code, such as error correlation and unusual decision log-likelihood ratio distributions. We explain and analyze these challenges and we propose two ways to overcome them.Comment: Presented at the 51st Asilomar Conference on Signals, Systems, and Computers, November 201

    Channel Coding at Low Capacity

    Full text link
    Low-capacity scenarios have become increasingly important in the technology of the Internet of Things (IoT) and the next generation of mobile networks. Such scenarios require efficient and reliable transmission of information over channels with an extremely small capacity. Within these constraints, the performance of state-of-the-art coding techniques is far from optimal in terms of either rate or complexity. Moreover, the current non-asymptotic laws of optimal channel coding provide inaccurate predictions for coding in the low-capacity regime. In this paper, we provide the first comprehensive study of channel coding in the low-capacity regime. We will investigate the fundamental non-asymptotic limits for channel coding as well as challenges that must be overcome for efficient code design in low-capacity scenarios.Comment: 39 pages, 5 figure
    corecore