5,641 research outputs found

    Reverse back-off mechanism for safety vehicular ad hoc networks

    Get PDF
    International audienceVehicular ad hoc networks can play an important role in enhancing transportation efficiency and improving road safety. Therefore, direct vehicle-to-vehicle communications are considered as one of the main building blocks of a future Intelligent Transportation System. The success and availability of IEEE 802.11 radios made this technology the most probable choice for the medium access control layer in vehicular networks. However, IEEE 802.11 was originally designed in a wireless local area network context and it is not optimised for a dynamic, ad hoc vehicular scenario. In this paper, we investigate the compatibility of the IEEE 802.11 medium access control protocol with the requirements of safety vehicular applications. As the protocols in this family are well-known for their scalability problems, we are especially interested in high density scenarios, quite frequent on today’s roads. Using an analytical framework, we study the performance of the back-off mechanism and the role of the contention window on the control channel of a vehicular network. Based on these findings, we propose a reverse back-off mechanism, specifically designed with road safety applications in mind. Extensive simulations are carried out to prove the efficiency of the proposed enhancement scheme and to better understand the characteristics of vehicular communications

    A density-based contention window control scheme for unicast communications in vehicular ad hoc networks

    Full text link
    [EN] Achieving a well-designed medium access control (MAC) protocol is a challenging issue to improve communications efficiency due to the dynamic nature of vehicular ad hoc networks (VANETs). IEEE 802.11p standard was selected as the best choice for vehicular environments considering its availability, maturity, and cost. The common problem in all IEEE 802.11 based protocols is scalability, exhibiting performance degradation in highly variable network scenarios. Experimental results for the IEEE 802.11-based MAC protocol show the importance of contention window adjustment on communications performance; However the vehicular communications community has not yet addressed this issue in unicast communication environments. This paper proposes a novel contention window control scheme for VANET environments based on estimating the network density, which is then used to dynamically adapt the CW size. Analysis and simulation results showthat our proposal provides better overall performance compared with previous proposals, even in high network density scenarios.This work was supported by the Ministerio de EconomĂ­a y Competitividad, Programa Estatal de InvestigaciĂłn, Desarrollo e InnovaciĂłn Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R.Balador, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2017). A density-based contention window control scheme for unicast communications in vehicular ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing. 24(1-2):65-75. doi:10.1504/IJAHUC.2017.080913S6575241-

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Modeling Probability of Path Loss for DSDV, OLSR and DYMO above 802.11 and 802.11p

    Full text link
    This paper presents path loss model along with framework for probability distribution function for VANETs. Furthermore, we simulate three routing protocols Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing (OLSR) and Dynamic MANET On-demand (DYMO) in NS-2 to evaluate and compare their performance using two Mac-layer Protocols 802.11 and 802.11p. A novel approach of this work is modifications in existing parameters to achieve high efficiency. After extensive simulations, we observe that DSDV out performs with 802.11p while DYMO gives best performance with 802.11.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Towards Scalable Beaconing in VANETs

    Get PDF
    Beaconing is envisioned to build a cooperative awareness in future intelligent vehicles, from which many ITS applications can draw their inputs. The problem of scalability has received ample attention over the past years and is primarily approached using power control methods. We reason power control alone will not be sufficient if we are to meet application requirements; the rate at which beacons are generated must also be controlled. Ultimately, adaptive approaches based on actual channel and traffic state can tune MAC and beaconing properties to optimal values in the dynamic VANET environment

    Scalable energy-efficient routing in mobile Ad hoc network

    Get PDF
    The quick deployment without any existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for dynamic situations such as military and rescue operations, disaster recovery, and so on and so forth. However, routing remains one of the major issues in MANET due to the highly dynamic and distributed environment. Energy consumption is also a significant issue in ad hoc networks since the nodes are battery powered. This report discusses some major dominating set based approaches to perform energy efficient routing in mobile ad hoc networks. It also presents the performance results for each of these mentioned approaches in terms of throughput, average end to end delay and the life time in terms of the first node failure. Based on the simulation results, I identified the key issues in these protocols regarding network life time. In this report, I propose and discuss a new approach “Dynamic Dominating Set Generation Algorithm” (DDSG) to optimize the network life time. This algorithm dynamically selects dominating nodes during the process of routing and thus creates a smaller dominating set. DDSG algorithm thereby eliminates the energy consumption from the non-used dominating nodes. In order to further increase the network life time, the algorithm takes into consideration the threshold settings which helps to distribute the process of routing within the network. This helps to eliminate a single dominating node from getting drained out by continuous transmission and reception of packets. In this report, the detailed algorithmic design and performance results through simulation is discussed

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol
    • …
    corecore