78 research outputs found

    The decision problem for a three-sorted fragment of set theory with restricted quantification and finite enumerations

    Get PDF
    We solve the satisfiability problem for a three-sorted fragment of set theory (denoted 3LQST0R3LQST_0^R), which admits a restricted form of quantification over individual and set variables and the finite enumeration operator {-,-,…,-}\{\text{-}, \text{-}, \ldots, \text{-}\} over individual variables, by showing that it enjoys a small model property, i.e., any satisfiable formula ψ\psi of 3LQST0R3LQST_0^R has a finite model whose size depends solely on the length of ψ\psi itself. Several set-theoretic constructs are expressible by 3LQST0R3LQST_0^R-formulae, such as some variants of the power set operator and the unordered Cartesian product. In particular, concerning the unordered Cartesian product, we show that when finite enumerations are used to represent the construct, the resulting formula is exponentially shorter than the one that can be constructed without resorting to such terms

    A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions

    Full text link
    In this paper we address the decision problem for a fragment of set theory with restricted quantification which extends the language studied in [4] with pair related quantifiers and constructs, in view of possible applications in the field of knowledge representation. We will also show that the decision problem for our language has a non-deterministic exponential time complexity. However, for the restricted case of formulae whose quantifier prefixes have length bounded by a constant, the decision problem becomes NP-complete. We also observe that in spite of such restriction, several useful set-theoretic constructs, mostly related to maps, are expressible. Finally, we present some undecidable extensions of our language, involving any of the operators domain, range, image, and map composition. [4] Michael Breban, Alfredo Ferro, Eugenio G. Omodeo and Jacob T. Schwartz (1981): Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Communications on Pure and Applied Mathematics 34, pp. 177-195Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Web ontology representation and reasoning via fragments of set theory

    Full text link
    In this paper we use results from Computable Set Theory as a means to represent and reason about description logics and rule languages for the semantic web. Specifically, we introduce the description logic \mathcal{DL}\langle 4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs on the left-hand/right-hand side of inclusion axioms, role chain axioms, and datatypes--which turns out to be quite expressive if compared with \mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology Language OWL. Then we show that the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by reducing it, through a suitable translation process, to the satisfiability problem of the stratified fragment 4LQSR4LQS^R of set theory, involving variables of four sorts and a restricted form of quantification. We prove also that, under suitable not very restrictive constraints, the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is \textbf{NP}-complete. Finally, we provide a 4LQSR4LQS^R-translation of rules belonging to the Semantic Web Rule Language (SWRL)

    A Decidable Quantified Fragment of Set Theory Involving Ordered Pairs with Applications to Description Logics

    Get PDF
    We present a decision procedure for a quantified fragment of set theory involving ordered pairs and some operators to manipulate them. When our decision procedure is applied to formulae in this fragment whose quantifier prefixes have length bounded by a fixed constant, it runs in nondeterministic polynomial-time. Related to this fragment, we also introduce a description logic which provides an unusually large set of constructs, such as, for instance, Boolean constructs among roles. The set-theoretic nature of the description logics semantics yields a straightforward reduction of the knowledge base consistency problem to the satisfiability problem for formulae of our fragment with quantifier prefixes of length at most 2, from which the NP-completeness of reasoning in this novel description logic follows. Finally, we extend this reduction to cope also with SWRL rules

    Set-syllogistics meet combinatorics

    Get PDF
    This paper considers 03* 00* prenex sentences of pure first-order predicate calculus with equality. This is the set of formulas which Ramsey's treated in a famous article of 1930. We demonstrate that the satisfiability problem and the problem of existence of arbitrarily large models for these formulas can be reduced to the satisfiability problem for 03* 00* prenex sentences of Set Theory (in the relators 08, =). We present two satisfiability-preserving (in a broad sense) translations \u3a6 \u21a6 (Formula presented.) and \u3a6 \u21a6 \u3a6\u3c3 of 03* 00* sentences from pure logic to well-founded Set Theory, so that if (Formula presented.) is satisfiable (in the domain of Set Theory) then so is \u3a6, and if \u3a6\u3c3 is satisfiable (again, in the domain of Set Theory) then \u3a6 can be satisfied in arbitrarily large finite structures of pure logic. It turns out that |(Formula presented.)| = (Formula presented.)(|\u3a6|) and |\u3a6\u3c3| = (Formula presented.)(|\u3a6|2). Our main result makes use of the fact that 03* 00* sentences, even though constituting a decidable fragment of Set Theory, offer ways to describe infinite sets. Such a possibility is exploited to glue together infinitely many models of increasing cardinalities of a given 03* 00* logical formula, within a single pair of infinite sets
    • …
    corecore