34,849 research outputs found

    Identification of the Servomechanism used for micro-displacement

    Get PDF
    Friction causes important errors in the control of small servomechanism and should be determined with precision in order to increase the system performance. This paper describes the method to identify the model parameters of a small linear drive with ball-screw. Two kinds of friction models will be applied for the servomechanism looking to rise its micropositioning abilities. The first one includes the static, viscous and Stribeck friction with hysteresis, and the second one uses the Lugre model. The results will be compared taking into account the criterion error, the accuracy and the normalized mean-square-error of the identified mechanical parameters. The coefficients of the models are identified by a recursive identification method using data acquisition and special filtering technics. The least square identification method is used in this paper in order to establish the motor parameters used as initial condition of the recursive estimation method. Computer simulations and experimental results demonstrate the efficiency of the proposed model

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Effects of Impedance Reduction of a Robot for Wrist Rehabilitation on Human Motor Strategies in Healthy Subjects during Pointing Tasks

    Get PDF
    Studies on human motor control demonstrated the existence of simplifying strategies (namely `Donders' law') adopted to deal with kinematically redundant motor tasks. In recent research we showed that Donders' law also holds for human wrist during pointing tasks, and that it is heavily perturbed when interacting with a highly back-drivable state-of-the-art rehabilitation robot. We hypothesized that this depends on the excessive mechanical impedance of the Pronation/Supination (PS) joint of the robot and in this work we analyzed the effects of its reduction. To this end we deployed a basic force control scheme, which minimizes human-robot interaction force. This resulted in a 70% reduction of the inertia in PS joint and in decrease of 81% and 78% of the interaction torques during 1-DOF and 3-DOFs tasks. To assess the effects on human motor strategies, pointing tasks were performed by three subjects with a lightweight handheld device, interacting with the robot using its standard PD control (setting impedance to zero) and with the force-controlled robot. We quantified Donders' law as 2-dimensional surfaces in the 3-dimensional configuration space of rotations. Results revealed that the subject-specific features of Donders' surfaces reappeared after the reduction of robot impedance obtained via the force control

    How Spinal Neural Networks Reduce Discrepancies between Motor Intention and Motor Realization

    Full text link
    This paper attempts a rational, step-by-step reconstruction of many aspects of the mammalian neural circuitry known to be involved in the spinal cord's regulation of opposing muscles acting on skeletal segments. Mathematical analyses and local circuit simulations based on neural membrane equations are used to clarify the behavioral function of five fundamental cell types, their complex connectivities, and their physiological actions. These cell types are: Ī±-MNs, Ī³-MNs, IaINs, IbINs, and Renshaw cells. It is shown that many of the complexities of spinal circuitry are necessary to ensure near invariant realization of motor intentions when descending signals of two basic types independently vary over large ranges of magnitude and rate of change. Because these two types of signal afford independent control, or Factorization, of muscle LEngth and muscle TEnsion, our construction was named the FLETE model (Bullock and Grossberg, 1988b, 1989). The present paper significantly extends the range of experimental data encompassed by this evolving model.National Science Foundation (IRI-87-16960, IRI-90-24877); Instituto TecnolĆ³gico y de Estudios Superiores de Monterre
    • ā€¦
    corecore