903 research outputs found

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Power-Optimal Feedback-Based Random Spectrum Access for an Energy Harvesting Cognitive User

    Full text link
    In this paper, we study and analyze cognitive radio networks in which secondary users (SUs) are equipped with Energy Harvesting (EH) capability. We design a random spectrum sensing and access protocol for the SU that exploits the primary link's feedback and requires less average sensing time. Unlike previous works proposed earlier in literature, we do not assume perfect feedback. Instead, we take into account the more practical possibilities of overhearing unreliable feedback signals and accommodate spectrum sensing errors. Moreover, we assume an interference-based channel model where the receivers are equipped with multi-packet reception (MPR) capability. Furthermore, we perform power allocation at the SU with the objective of maximizing the secondary throughput under constraints that maintain certain quality-of-service (QoS) measures for the primary user (PU)

    On Spectrum Sharing Between Energy Harvesting Cognitive Radio Users and Primary Users

    Full text link
    This paper investigates the maximum secondary throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources and primary radio frequency (RF) transmissions. We propose a power allocation policy at the PU and analyze its effect on the throughput of both the PU and SU. Furthermore, we study the impact of the bursty arrivals at the PU on the energy harvested by the SU from RF transmissions. Moreover, we investigate the impact of the rate of energy harvesting from natural resources on the SU throughput. We assume fading channels and compute exact closed-form expressions for the energy harvested by the SU under fading. Results reveal that the proposed power allocation policy along with the implemented RF energy harvesting at the SU enhance the throughput of both primary and secondary links

    COOPERATIVE NETWORKING AND RELATED ISSUES: STABILITY, ENERGY HARVESTING, AND NEIGHBOR DISCOVERY

    Get PDF
    This dissertation deals with various newly emerging topics in the context of cooperative networking. The first part is about the cognitive radio. To guarantee the performance of high priority users, it is important to know the activity of the high priority communication system but the knowledge is usually imperfect due to randomness in the observed signal. In such a context, the stability property of cognitive radio systems in the presence of sensing errors is studied. General guidelines on controlling the operating point of the sensing device over its receiver operating characteristics are also given. We then consider the hybrid of different modes of operation for cognitive radio systems with time-varying connectivity. The random connectivity gives additional chances that can be utilized by the low priority communication system. The second part of this dissertation is about the random access. We are specifically interested in the scenario when the nodes are harvesting energy from the environment. For such a system, we accurately assess the effect of limited, but renewable, energy availability on the stability region. The effect of finite capacity batteries is also studied. We next consider the exploitation of diversity amongst users under random access framework. That is, each user adapts its transmission probability based on the local channel state information in a decentralized manner. The impact of imperfect channel state information on the stability region is investigated. Furthermore, it is compared to the class of stationary scheduling policies that make centralized decisions based on the channel state feedback. The backpressure policy for cross-layer control of wireless multi-hop networks is known to be throughput-optimal for i.i.d. arrivals. The third part of this dissertation is about the backpressure-based control for networks with time-correlated arrivals that may exhibit long-range dependency. It is shown that the original backpressure policy is still throughput-optimal but with increased average network delay. The case when the arrival rate vector is possibly outside the stability region is also studied by augmenting the backpressure policy with the flow control mechanism. Lastly, the problem of neighbor discovery in a wireless sensor network is dealt. We first introduce the realistic effect of physical layer considerations in the evaluation of the performance of logical discovery algorithms by incorporating physical layer parameters. Secondly, given the lack of knowledge of the number of neighbors along with the lack of knowledge of the individual signal parameters, we adopt the viewpoint of random set theory to the problem of detecting the transmitting neighbors. Random set theory is a generalization of standard probability theory by assigning sets, rather than values, to random outcomes and it has been applied to multi-user detection problem when the set of transmitters are unknown and dynamically changing
    • …
    corecore