8 research outputs found

    New Stability Criterion for Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Probabilistic Time-Varying Delays

    Get PDF
    A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-Krasovskii functional is the positive definite form of p powers, which is different from those of existing literature. Moreover, a numerical example illustrates the effectiveness of the proposed methods

    Stochastic Processes with Applications

    Get PDF
    Stochastic processes have wide relevance in mathematics both for theoretical aspects and for their numerous real-world applications in various domains. They represent a very active research field which is attracting the growing interest of scientists from a range of disciplines.This Special Issue aims to present a collection of current contributions concerning various topics related to stochastic processes and their applications. In particular, the focus here is on applications of stochastic processes as models of dynamic phenomena in research areas certain to be of interest, such as economics, statistical physics, queuing theory, biology, theoretical neurobiology, and reliability theory. Various contributions dealing with theoretical issues on stochastic processes are also included

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Harnessing Neural Dynamics as a Computational Resource

    Get PDF
    Researchers study nervous systems at levels of scale spanning several orders of magnitude, both in terms of time and space. While some parts of the brain are well understood at specific levels of description, there are few overarching theories that systematically bridge low-level mechanism and high-level function. The Neural Engineering Framework (NEF) is an attempt at providing such a theory. The NEF enables researchers to systematically map dynamical systems—corresponding to some hypothesised brain function—onto biologically constrained spiking neural networks. In this thesis, we present several extensions to the NEF that broaden both the range of neural resources that can be harnessed for spatiotemporal computation and the range of available biological constraints. Specifically, we suggest a method for harnessing the dynamics inherent in passive dendritic trees for computation, allowing us to construct single-layer spiking neural networks that, for some functions, achieve substantially lower errors than larger multi-layer networks. Furthermore, we suggest “temporal tuning” as a unifying approach to harnessing temporal resources for computation through time. This allows modellers to directly constrain networks to temporal tuning observed in nature, in ways not previously well-supported by the NEF. We then explore specific examples of neurally plausible dynamics using these techniques. In particular, we propose a new “information erasure” technique for constructing LTI systems generating temporal bases. Such LTI systems can be used to establish an optimal basis for spatiotemporal computation. We demonstrate how this captures “time cells” that have been observed throughout the brain. As well, we demonstrate the viability of our extensions by constructing an adaptive filter model of the cerebellum that successfully reproduces key features of eyeblink conditioning observed in neurobiological experiments. Outside the cognitive sciences, our work can help exploit resources available on existing neuromorphic computers, and inform future neuromorphic hardware design. In machine learning, our spatiotemporal NEF populations map cleanly onto the Legendre Memory Unit (LMU), a promising artificial neural network architecture for stream-to-stream processing that outperforms competing approaches. We find that one of our LTI systems derived through “information erasure” may serve as a computationally less expensive alternative to the LTI system commonly used in the LMU

    NASA University program management information system, FY 1993

    Get PDF
    The University Program Report, Fiscal Year 1993, provides current information and related statistics for 7682 grants/contracts/cooperative agreements active during the report period. NASA field centers and certain Headquarters program offices provide funds for those R&D activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program
    corecore