32 research outputs found

    Topology-aware optimization of big sparse matrices and matrix multiplications on main-memory systems

    Get PDF
    Since data sizes of analytical applications are continuously growing, many data scientists are switching from customized micro-solutions to scalable alternatives, such as statistical and scientific databases. However, many algorithms in data mining and science are expressed in terms of linear algebra, which is barely supported by major database vendors and big data solutions. On the other side, conventional linear algebra algorithms and legacy matrix representations are often not suitable for very large matrices. We propose a strategy for large matrix processing on modern multicore systems that is based on a novel, adaptive tile matrix representation (AT MATRIX). Our solution utilizes multiple techniques inspired from database technology, such as multidimensional data partitioning, cardinality estimation, indexing, dynamic rewrites, and many more in order to optimize the execution time. Based thereon we present a matrix multiplication operator ATMULT, which outperforms alternative approaches. The aim of our solution is to overcome the burden for data scientists of selecting appropriate algorithms and matrix storage representations. We evaluated AT MATRIX together with ATMULT on several real-world and synthetic random matrices

    The Tensor Algebra Compiler

    Get PDF
    Tensor and linear algebra is pervasive in data analytics and the physical sciences. Often the tensors, matrices or even vectors are sparse. Computing expressions involving a mix of sparse and dense tensors, matrices and vectors requires writing kernels for every operation and combination of formats of interest. The number of possibilities is infinite, which makes it impossible to write library code for all. This problem cries out for a compiler approach. This paper presents a new technique that compiles compound tensor algebra expressions combined with descriptions of tensor formats into efficient loops. The technique is evaluated in a prototype compiler called taco, demonstrating competitive performance to best-in-class hand-written codes for tensor and matrix operations
    corecore