617 research outputs found

    Request-and-Reverify: Hierarchical Hypothesis Testing for Concept Drift Detection with Expensive Labels

    Full text link
    One important assumption underlying common classification models is the stationarity of the data. However, in real-world streaming applications, the data concept indicated by the joint distribution of feature and label is not stationary but drifting over time. Concept drift detection aims to detect such drifts and adapt the model so as to mitigate any deterioration in the model's predictive performance. Unfortunately, most existing concept drift detection methods rely on a strong and over-optimistic condition that the true labels are available immediately for all already classified instances. In this paper, a novel Hierarchical Hypothesis Testing framework with Request-and-Reverify strategy is developed to detect concept drifts by requesting labels only when necessary. Two methods, namely Hierarchical Hypothesis Testing with Classification Uncertainty (HHT-CU) and Hierarchical Hypothesis Testing with Attribute-wise "Goodness-of-fit" (HHT-AG), are proposed respectively under the novel framework. In experiments with benchmark datasets, our methods demonstrate overwhelming advantages over state-of-the-art unsupervised drift detectors. More importantly, our methods even outperform DDM (the widely used supervised drift detector) when we use significantly fewer labels.Comment: Published as a conference paper at IJCAI 201

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    Solving the challenges of concept drift in data stream classification.

    Get PDF
    The rise of network connected devices and applications leads to a significant increase in the volume of data that are continuously generated overtime time, called data streams. In real world applications, storing the entirety of a data stream for analyzing later is often not practical, due to the data stream’s potentially infinite volume. Data stream mining techniques and frameworks are therefore created to analyze streaming data as they arrive. However, compared to traditional data mining techniques, challenges unique to data stream mining also emerge, due to the high arrival rate of data streams and their dynamic nature. In this dissertation, an array of techniques and frameworks are presented to improve the solutions on some of the challenges. First, this dissertation acknowledges that a “no free lunch” theorem exists for data stream mining, where no silver bullet solution can solve all problems of data stream mining. The dissertation focuses on detection of changes of data distribution in data stream mining. These changes are called concept drift. Concept drift can be categorized into many types. A detection algorithm often works only on some types of drift, but not all of them. Because of this, the dissertation finds specific techniques to solve specific challenges, instead of looking for a general solution. Then, this dissertation considers improving solutions for the challenges of high arrival rate of data streams. Data stream mining frameworks often need to process vast among of data samples in limited time. Some data mining activities, notably data sample labeling for classification, are too costly or too slow in such large scale. This dissertation presents two techniques that reduce the amount of labeling needed for data stream classification. The first technique presents a grid-based label selection process that apply to highly imbalanced data streams. Such data streams have one class of data samples vastly outnumber another class. Many majority class samples need to be labeled before a minority class sample can be found due to the imbalance. The presented technique divides the data samples into groups, called grids, and actively search for minority class samples that are close by within a grid. Experiment results show the technique can reduce the total number of data samples needed to be labeled. The second technique presents a smart preprocessing technique that reduce the number of times a new learning model needs to be trained due to concept drift. Less model training means less data labels required, and thus costs less. Experiment results show that in some cases the reduced performance of learning models is the result of improper preprocessing of the data, not due to concept drift. By adapting preprocessing to the changes in data streams, models can retain high performance without retraining. Acknowledging the high cost of labeling, the dissertation then considers the scenario where labels are unavailable when needed. The framework Sliding Reservoir Approach for Delayed Labeling (SRADL) is presented to explore solutions to such problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, and no labels are immediately available. SRADL uses semi-supervised learning by employing a sliding windowed approach to store historical data, which is combined with newly unlabeled data to train new models. Experiments show that SRADL perform well in some cases of delayed labeling. Next, the dissertation considers improving solutions for the challenge of dynamism within data streams, most notably concept drift. The complex nature of concept drift means that most existing detection algorithms can only detect limited types of concept drift. To detect more types of concept drift, an ensemble approach that employs various algorithms, called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted on by the detection results of each algorithm in the ensemble. Types of concept drift with votes past majority are then declared detected. Experiment results show that HEFDD is able to improve detection accuracy significantly while reducing false positives. With the ability to detect various types of concept drift provided by HEFDD, the dissertation tries to improve the delayed labeling framework SRADL. A new combined framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the unavailability of labels by human expert. SRADL-HEFDD employs different synthetic labeling techniques based on different types of drift detected by HEFDD. Experimental results show that comparing to the default SRADL, the combined framework improves prediction performance when small amount of labeled samples is available. Finally, as machine learning applications are increasingly used in critical domains such as medical diagnostics, accountability, explainability and interpretability of machine learning algorithms needs to be considered. Explainable machine learning aims to use a white box approach for data analytics, which enables learning models to be explained and interpreted by human users. However, few studies have been done on explaining what has changed in a dynamic data stream environment. This dissertation thus presents Data Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and model classification boundaries between chunks of streaming data. The visualizations can then be used by a data mining researcher to generate explanations of what has changed within the data stream. To show that DSE can help average users understand data stream mining better, a survey was conducted with an expert group and a non-expert group of users. Results show DSE can reduce the gap of understanding what changed in data stream mining between the two groups
    • 

    corecore