49 research outputs found

    Security of Forensic Techniques for Digital Images

    Get PDF
    Digital images are used everywhere in modern life and mostly replace traditional photographs. At the same time, due to the popularity of image editing tools, digital images can be altered, often leaving no obvious evidence. Thus, evaluating image authenticity is indispensable. Image forensic techniques are used to detect forgeries in digital images in the absence of embedded watermarks or signatures. Nevertheless, some legitimate or illegitimate image post-processing operations can affect the quality of the forensic results. Therefore, the reliability of forensic techniques needs to be investigated. The reliability is understood in this case as the robustness against image post-processing operations or the security against deliberated attacks. In this work, we first develop a general test framework, which is used to assess the effectiveness and security of image forensic techniques under common conditions. We design different evaluation metrics, image datasets, and several different image post-processing operations as a part of the framework. Secondly, we build several image forensic tools based on selected algorithms for detecting copy-move forgeries, re-sampling artifacts, and manipulations in JPEG images. The effectiveness and robustness of the tools are evaluated by using the developed test framework. Thirdly, for each selected technique, we develop several targeted attacks. The aim of targeted attacks against a forensic technique is to remove forensic evidence present in forged images. Subsequently, by using the test framework and the targeted attacks, we can thoroughly evaluate the security of the forensic technique. We show that image forensic techniques are often sensitive and can be defeated when their algorithms are publicly known. Finally, we develop new forensic techniques which achieve higher security in comparison with state-of-the-art forensic techniques

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Copy-Move Forgery Detection and Localization Using a Generative Adversarial Network and Convolutional Neural-Network

    Get PDF
    The problem of forged images has become a global phenomenon that is spreading mainly through social media. New technologies have provided both the means and the support for this phenomenon, but they are also enabling a targeted response to overcome it. Deep convolution learning algorithms are one such solution. These have been shown to be highly effective in dealing with image forgery derived from generative adversarial networks (GANs). In this type of algorithm, the image is altered such that it appears identical to the original image and is nearly undetectable to the unaided human eye as a forgery. The present paper investigates copy-move forgery detection using a fusion processing model comprising a deep convolutional model and an adversarial model. Four datasets are used. Our results indicate a significantly high detection accuracy performance (~95%) exhibited by the deep learning CNN and discriminator forgery detectors. Consequently, an end-to-end trainable deep neural network approach to forgery detection appears to be the optimal strategy. The network is developed based on two-branch architecture and a fusion module. The two branches are used to localize and identify copy-move forgery regions through CNN and GAN

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Lighting and Optical Tools for Image Forensics

    Get PDF
    We present new forensic tools that are capable of detecting traces of tampering in digital images without the use of watermarks or specialized hardware. These tools operate under the assumption that images contain natural properties from a variety of sources, including the world, the lens, and the sensor. These properties may be disturbed by digital tampering and by measuring them we can expose the forgery. In this context, we present the following forensic tools: (1) illuminant direction, (2) specularity, (3) lighting environment, and (4) chromatic aberration. The common theme of these tools is that they exploit lighting or optical properties of images. Although each tool is not applicable to every image, they add to a growing set of image forensic tools that together will complicate the process of making a convincing forgery
    corecore