309 research outputs found

    Exploitation of Geographic Information Systems for Vehicular Destination Prediction

    Get PDF
    Much of the recent successes in the Iraqi theater have been achieved with the aid of technology so advanced that celebrated journalist Bob Woodward recently compared it to the Manhattan Project of WWII. Intelligence, Surveillance, and Reconnaissance (ISR) platforms have emerged as the rising star of Air Force operational capabilities as they are enablers in the quest to track and disrupt terrorist and insurgent forces. This thesis argues that ISR systems have been severely under-exploited. The proposals herein seek to improve the machine-human interface of current ISR systems such that a predictive battle-space awareness may be achieved, leading to shorter kill-chains and better utilization of high demand assets. This thesis shows that, if a vehicle is being tracked by an ISR platform, it is possible to predict where it might go within a Time Horizon. This predictive knowledge is represented graphically to enable quick decisioning. This is accomplished by using Geo-Spatial Information Systems (GIS) obtained from municipal, commercial, or other ISR sources (e.g., hyperspectral) to model an urban grid. It then employs graph-theoretic search algorithms that prune the future state-space of that vehicle\u27s environment, resulting in an envelope that constricts around all possible destinations. This thesis demonstrates an 81 % success rate for predictions carried out during experimentation. It further demonstrates a 97 % improvement over predictions made solely with models based on vehicular motion. This thesis reveals that the predictive envelopes show immense promise in improving ISR asset management, offering more intelligent interdiction of targets, and enabling ground sensor-cueing. Moreover, these predictive capabilities allow an operator to assign assets to make precise perturbations on the battle-space for true event-shaping. Finally, this thesis shows that the proposed methodologies are easily and cost-effectively deployed over existing Air Force architectures using the Software as a Service business model

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools

    Proceedings of the ECIR2010 workshop on information access for personal media archives (IAPMA2010), Milton Keynes, UK, 28 March 2010

    Get PDF
    Towards e-Memories: challenges of capturing, summarising, presenting, understanding, using, and retrieving relevant information from heterogeneous data contained in personal media archives. This is the proceedings of the inaugural workshop on “Information Access for Personal Media Archives”. It is now possible to archive much of our life experiences in digital form using a variety of sources, e.g. blogs written, tweets made, social network status updates, photographs taken, videos seen, music heard, physiological monitoring, locations visited and environmentally sensed data of those places, details of people met, etc. Information can be captured from a myriad of personal information devices including desktop computers, PDAs, digital cameras, video and audio recorders, and various sensors, including GPS, Bluetooth, and biometric devices. In this workshop research from diverse disciplines was presented on how we can advance towards the goal of effective capture, retrieval and exploration of e-memories

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore